Monitor water quality through retrieving water quality parameters from hyperspectral images using graph convolution network with superposition of multi-point effect: A case study in Maozhou River

均方误差 高光谱成像 水质 化学需氧量 生化需氧量 平均绝对百分比误差 总悬浮物 计算机科学 遥感 图形 算法 环境科学 统计 数学 人工智能 环境工程 生态学 理论计算机科学 废水 生物 地质学
作者
Yishan Zhang,Xin Kong,Licui Deng,Yawei Liu
出处
期刊:Journal of Environmental Management [Elsevier BV]
卷期号:342: 118283-118283 被引量:20
标识
DOI:10.1016/j.jenvman.2023.118283
摘要

Quantitative prediction by unmanned aerial vehicle (UAV) remote sensing on water quality parameters (WQPs) including phosphorus, nitrogen, chemical oxygen demand (COD), biochemical oxygen demand (BOD), and chlorophyll a (Chl-a), total suspended solids (TSS), and turbidity provides a flexible and effective approach to monitor the variation in water quality. In this study, a deep learning-based method integrating graph convolution network (GCN), gravity model variant, and dual feedback machine involving parametric probability analysis and spatial distribution pattern analysis, named Graph Convolution Network with Superposition of Multi-point Effect (SMPE-GCN) has been developed to calculate concentrations of WQPs through UAV hyperspectral reflectance data on large scale efficiently. With an end-to-end structure, our proposed method has been applied to assisting environmental protection department to trace potential pollution sources in real time. The proposed method is trained on a real-world dataset and its effectiveness is validated on an equal amount of testing dataset with respect to three evaluation metrics including root of mean squared error (RMSE), mean absolute percent error (MAPE), and coefficient of determination (R2). The experimental results demonstrate that our proposed model achieves better performance in comparison with state-of-the-art baseline models in terms of RMSE, MAPE, and R2. The proposed method is applicable for quantifying seven various WQPs and has achieved good performance for each WQP. The resulting MAPE ranges from 7.16% to 10.96% and R2 ranges from 0.80 to 0.94 for all WQPs. This approach brings a novel and systematic insight into real-time quantitative water quality monitoring of urban rivers, and provides a unified framework for in-situ data acquisition, feature engineering, data conversion, and data modeling for further research. It provides fundamental support to assist environmental managers to efficiently monitor water quality of urban rivers.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
尽快毕业完成签到 ,获得积分10
刚刚
two发布了新的文献求助10
1秒前
stt1011发布了新的文献求助10
1秒前
无花果应助魔幻的旋蒸采纳,获得10
4秒前
5秒前
欣慰的觅儿完成签到,获得积分10
9秒前
orixero应助Harmony_Zhao采纳,获得10
9秒前
10秒前
入暖发布了新的文献求助10
10秒前
小陆完成签到 ,获得积分10
10秒前
12秒前
星辰大海应助仁爱的寻凝采纳,获得10
13秒前
14秒前
14秒前
15秒前
16秒前
棖0921发布了新的文献求助10
16秒前
小陆完成签到 ,获得积分10
17秒前
Billy应助长村采纳,获得30
18秒前
18秒前
19秒前
研友_8Yo3dn给研友_8Yo3dn的求助进行了留言
20秒前
调皮糖豆完成签到,获得积分10
20秒前
JamesPei应助stt1011采纳,获得10
21秒前
仲夏发布了新的文献求助10
21秒前
魔幻的驳发布了新的文献求助10
22秒前
LArry发布了新的文献求助10
22秒前
道天发布了新的文献求助10
23秒前
23秒前
24秒前
24秒前
25秒前
Getlogger发布了新的文献求助10
28秒前
29秒前
PA应助国家栋梁采纳,获得20
29秒前
生动越彬发布了新的文献求助10
29秒前
30秒前
香蕉觅云应助无私的蛋挞采纳,获得10
30秒前
freshman发布了新的文献求助20
30秒前
liuzhou发布了新的文献求助10
33秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Narcissistic Personality Disorder 700
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
The Elgar Companion to Consumer Behaviour and the Sustainable Development Goals 540
The Martian climate revisited: atmosphere and environment of a desert planet 500
Transnational East Asian Studies 400
Towards a spatial history of contemporary art in China 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3845211
求助须知:如何正确求助?哪些是违规求助? 3387334
关于积分的说明 10549091
捐赠科研通 3108104
什么是DOI,文献DOI怎么找? 1712376
邀请新用户注册赠送积分活动 824385
科研通“疑难数据库(出版商)”最低求助积分说明 774751