Digital Twins and Automation of Care in the Intensive Care Unit

医疗保健 生产力 自动化 业务 数字健康 医学 运营管理 计算机科学 工程类 经济 经济增长 机械工程 宏观经济学
作者
J. Geoffrey Chase,Cong Zhou,Jennifer L. Knopp,Knut Möeller,Balázs Benyó,Thomas Desaive,Jennifer Wong,Sanna Malinen,Katharina Näswall,Geoffrey M. Shaw,Bernard Lambermont,Yeong Shiong Chiew
标识
DOI:10.1002/9781119857433.ch17
摘要

Healthcare is under increasing demand pressure as societies age and expectations rise, multiplied by increasing incidence of chronic diseases and decreasing available funding. The fundamental issue is the signal lack of productivity gains in medical care over the last four decades with the advent of digital technologies compared to many other fields of human endeavor. There is thus a need to bring digital technologies and automation to improve productivity and personalize care, improving costs and outcomes for patients and providers. Cyber–physical–human system s ( CPHS ), mixing digital technologies, computation, clinical staff, and patient physiology, offer a route forward. Critical care is one of the most technology-laden areas of healthcare, one of the biggest areas of patient growth with demographic change, and one of the costliest areas of care. Consuming 8–10% of healthcare expenditure (0.8–1.5% GDP) for less than 1% of patients, the intensive care unit ( ICU ) presents a major opportunity for CPHS systems to have an impact in creating the productive, next-generation care required to meet the demand for improved productivity and care. Personalized care, moving from today's one size fits all protocolized care to adaptive, model-based one method fits all care through model-based automation or clinician in the loop semiautomation is the means by which CPHS can enter this realm to positive impact. More specifically, digital twins or virtual patient models, personalized at the bedside in real-time, provide the means to optimize care by linking sensor measurements to outcome focused care actions, enabling personalized control. Digital twins and the so-called "hyper-automation" solutions have been leading technology trends for the last few years, but have yet to come to medicine. This review covers the increasing development of digital twins for medicine, and intensive care in particular, as the foundation for CPHS medical automation to improve care and productivity to meet rising demand. It covers the integrated role played by social sciences in the development, translation, and adoption of innovation, where medicine is historically conservative in adopting innovative solutions and technologies. It ends with a vision of the future from technical, social-behavioral, and combined overall perspectives for digital twins in this domain. CPHS solutions founded on digital twins offer the potential for a step change in ICU care, simultaneously increasing productivity, personalization, and quality of outcomes, while reducing the cost of care. Where the ICU is technology laden and thus most susceptible to this form of automation and disruption, the approach is general and will eventually spread to further areas of healthcare.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lyp7028发布了新的文献求助10
刚刚
不安的乞发布了新的文献求助10
刚刚
刚刚
SC武发布了新的文献求助10
刚刚
jing完成签到,获得积分10
刚刚
科研一路绿灯完成签到,获得积分10
刚刚
刚刚
1秒前
1秒前
陈仲完成签到,获得积分10
2秒前
3秒前
科研通AI5应助shanshui采纳,获得10
3秒前
3秒前
3秒前
深情安青应助122采纳,获得10
3秒前
3秒前
潇洒闭月发布了新的文献求助10
4秒前
孙雷发布了新的文献求助10
4秒前
4秒前
Cy完成签到 ,获得积分10
4秒前
大傻春完成签到 ,获得积分10
5秒前
nilou完成签到,获得积分10
6秒前
maidoudou完成签到,获得积分10
6秒前
AI_S发布了新的文献求助10
6秒前
7秒前
7秒前
7秒前
一一得一完成签到,获得积分10
7秒前
青菜虫子发布了新的文献求助10
7秒前
科研通AI5应助张朝程采纳,获得10
8秒前
111发布了新的文献求助10
8秒前
奋斗秋尽完成签到,获得积分10
8秒前
8秒前
Lee完成签到,获得积分10
9秒前
9秒前
三百一十四完成签到 ,获得积分10
9秒前
10秒前
11秒前
不安的乞完成签到,获得积分10
11秒前
12秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
New Syntheses with Carbon Monoxide 200
Faber on mechanics of patent claim drafting 200
Quanterion Automated Databook NPRD-2023 200
Interpretability and Explainability in AI Using Python 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3834484
求助须知:如何正确求助?哪些是违规求助? 3376988
关于积分的说明 10496011
捐赠科研通 3096514
什么是DOI,文献DOI怎么找? 1704953
邀请新用户注册赠送积分活动 820381
科研通“疑难数据库(出版商)”最低求助积分说明 772011