Spectral- and spatial-based multi-focus image fusion method towards multi-layer nonwovens

人工智能 保险丝(电气) 图像融合 计算机视觉 光学(聚焦) 计算机科学 卷积神经网络 重影 图像(数学) 融合 模式识别(心理学) 光学 工程类 语言学 哲学 物理 电气工程
作者
Mengqiu Zhu,Lingjie Yu,Runjun Sun,Zhenxia Ke,Youyong Zhou,Shuai Wang,Chao Zhi
出处
期刊:Textile Research Journal [SAGE Publishing]
卷期号:93 (21-22): 4729-4741
标识
DOI:10.1177/00405175231179516
摘要

In the microscopic imaging scenario where the object thickness exceeds the depth of field of the microscope, multi-focus image fusion (MFF) is an effective method to generate an all-in-focus image. However, for nonwoven fabric for which the captured image number is up to 100 or more, the existing methods often underperform in areas near the fiber edges, owing to image ghosting and noise accumulation caused by the platform moving. To address the above problem, this paper presents a method designed to fuse multi-layer micro-images based on the combination of spectral and spatial features of the images. Firstly, the spectral domain-based map is generated by decomposition and reconstruction of the high-frequency and low-frequency components of the images, aimed at obtaining the edge information. Simultaneously, the spatial domain-based fuse map is built through sharpness measurement, referring to visual perception. Finally, the two methods are combined via an optimized weight to obtain an all-in-focus fused image. Four groups of real-world data consisting of 100 multi-focus nonwoven images are utilized to verify the superiority of this method. The experimental results demonstrate that the proposed method can obtain satisfactory performance in terms of both human visual evaluation and objective evaluation compared with the image fusion framework based on the convolutional neural network, MFF, region-based image fusion algorithm and convolutional neural network state-of-the-art fusion methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研小虫完成签到,获得积分10
2秒前
3秒前
水心完成签到,获得积分10
4秒前
5秒前
岛err完成签到,获得积分10
5秒前
小疯子007完成签到,获得积分10
6秒前
火星上的雨莲完成签到,获得积分10
7秒前
bkagyin应助冰红茶采纳,获得10
8秒前
CCL完成签到,获得积分10
9秒前
上官若男应助阿北采纳,获得30
10秒前
pb完成签到 ,获得积分10
10秒前
10秒前
zgtmark完成签到,获得积分10
11秒前
12秒前
winni完成签到,获得积分10
13秒前
金阿垚在科研完成签到,获得积分10
15秒前
飘文献完成签到,获得积分10
16秒前
16秒前
科研通AI2S应助abcd_1067采纳,获得10
17秒前
18秒前
19秒前
tdtk发布了新的文献求助10
20秒前
雷锋完成签到 ,获得积分10
20秒前
唠叨的傲薇完成签到 ,获得积分10
22秒前
HEAUBOOK应助冰红茶采纳,获得10
22秒前
友好的夏之完成签到,获得积分10
24秒前
28秒前
ti完成签到,获得积分10
28秒前
阿敬完成签到,获得积分10
28秒前
绿兔子完成签到 ,获得积分10
28秒前
abcd_1067完成签到,获得积分10
28秒前
slin_sjtu完成签到,获得积分0
29秒前
29秒前
sjl完成签到,获得积分10
29秒前
29秒前
瑞仔完成签到,获得积分10
30秒前
HEAUBOOK应助冰红茶采纳,获得10
32秒前
传奇3应助gege采纳,获得10
32秒前
李佳宇发布了新的文献求助50
35秒前
36秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Computational Atomic Physics for Kilonova Ejecta and Astrophysical Plasmas 500
Technologies supporting mass customization of apparel: A pilot project 450
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3782820
求助须知:如何正确求助?哪些是违规求助? 3328174
关于积分的说明 10235032
捐赠科研通 3043175
什么是DOI,文献DOI怎么找? 1670456
邀请新用户注册赠送积分活动 799718
科研通“疑难数据库(出版商)”最低求助积分说明 759010