亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Quantum-based machine learning and AI models to generate force field parameters for drug-like small molecules

部分电荷 力场(虚构) 溶剂化 分子 领域(数学) 密度泛函理论 Atom(片上系统) 统计物理学 化学 隐溶剂化 分子动力学 计算化学 化学物理 物理 计算机科学 量子力学 数学 有机化学 纯数学 嵌入式系统
作者
Sathish Kumar Mudedla,A. Braka,Sangwook Wu
出处
期刊:Frontiers in Molecular Biosciences [Frontiers Media]
卷期号:9 被引量:5
标识
DOI:10.3389/fmolb.2022.1002535
摘要

Force fields for drug-like small molecules play an essential role in molecular dynamics simulations and binding free energy calculations. In particular, the accurate generation of partial charges on small molecules is critical to understanding the interactions between proteins and drug-like molecules. However, it is a time-consuming process. Thus, we generated a force field for small molecules and employed a machine learning (ML) model to rapidly predict partial charges on molecules in less than a minute of time. We performed density functional theory (DFT) calculation for 31770 small molecules that covered the chemical space of drug-like molecules. The partial charges for the atoms in a molecule were predicted using an ML model trained on DFT-based atomic charges. The predicted values were comparable to the charges obtained from DFT calculations. The ML model showed high accuracy in the prediction of atomic charges for external test data sets. We also developed neural network (NN) models to assign atom types, phase angles and periodicities. All the models performed with high accuracy on test data sets. Our code calculated all the descriptors that were needed for the prediction of force field parameters and produced topologies for small molecules by combining results from ML and NN models. To assess the accuracy of the predicted force field parameters, we calculated solvation free energies for small molecules, and the results were in close agreement with experimental free energies. The AI-generated force field was effective in the fast and accurate generation of partial charges and other force field parameters for small drug-like molecules.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助科研通管家采纳,获得10
7秒前
科研通AI2S应助科研通管家采纳,获得10
7秒前
张庆鲁完成签到,获得积分20
8秒前
Alex发布了新的文献求助200
13秒前
breeze完成签到,获得积分10
18秒前
MchemG应助宓飞烟采纳,获得10
19秒前
yangdan发布了新的文献求助10
23秒前
WizBLue完成签到,获得积分10
51秒前
56秒前
1分钟前
烟消云散完成签到,获得积分10
1分钟前
彭于晏应助高大的战斗机采纳,获得10
1分钟前
hmf1995完成签到 ,获得积分10
1分钟前
英姑应助月亮煮粥采纳,获得10
1分钟前
12321234完成签到,获得积分10
1分钟前
SCINEXUS完成签到,获得积分0
1分钟前
1分钟前
Alex发布了新的文献求助10
1分钟前
CATH完成签到 ,获得积分10
1分钟前
12321234发布了新的文献求助10
1分钟前
1分钟前
月亮煮粥发布了新的文献求助10
1分钟前
顾矜应助高大的帆布鞋采纳,获得10
1分钟前
正在获取昵称中...完成签到,获得积分10
1分钟前
1分钟前
斯文败类应助yyy采纳,获得10
1分钟前
科研通AI5应助科研通管家采纳,获得10
2分钟前
小蘑菇应助科研通管家采纳,获得10
2分钟前
2分钟前
Owen应助科研通管家采纳,获得10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
2分钟前
uikymh完成签到 ,获得积分0
2分钟前
2分钟前
2分钟前
2分钟前
yyy发布了新的文献求助10
2分钟前
科研通AI2S应助yyy采纳,获得10
2分钟前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Multichannel rotary joints-How they work 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3795549
求助须知:如何正确求助?哪些是违规求助? 3340566
关于积分的说明 10300530
捐赠科研通 3057093
什么是DOI,文献DOI怎么找? 1677428
邀请新用户注册赠送积分活动 805404
科研通“疑难数据库(出版商)”最低求助积分说明 762499