Time-resolved single-cell RNA-seq using metabolic RNA labelling

计算生物学 核糖核酸 基因组学 生物 标签 基因 基因组 遗传学 生物化学
作者
Florian Erhard,Antoine‐Emmanuel Saliba,Alexandra Lusser,Christophe Toussaint,Thomas Hennig,Bhupesh K. Prusty,Daniel S. Kirschenbaum,Kathleen Abadie,Eric A. Miska,Caroline C. Friedel,Ido Amit,Ronald Micura,Lars Dölken
出处
期刊:Nature Reviews Methods Primers [Springer Nature]
卷期号:2 (1) 被引量:62
标识
DOI:10.1038/s43586-022-00157-z
摘要

Single-cell RNA genomics technologies are revolutionizing biomedical science by profiling single cells with unprecedented resolution, providing fundamental insights into the role of different cellular states and intercellular heterogeneity in health and disease. The combination of single-cell RNA sequencing (scRNA-seq) with metabolic RNA labelling approaches now enables time-resolved monitoring of transcriptional responses for thousands of genes in thousands of individual cells in parallel. This facilitates and accelerates direct characterization of the temporal dimension of biological processes, which has been largely missing in current data. In this Primer, we provide an overview of the various metabolic RNA labelling approaches and their combination with currently available scRNA-seq and multi-omics platforms. We summarize the main challenges in the design of such experiments and discuss the various applications of time-resolved scRNA-seq in vitro and in vivo. We outline the computational tools and challenges to the analyses of the temporal dynamics of transcriptional responses at the single-cell level. We discuss the prospect of integrating data obtained by the respective time-resolved scRNA-seq approaches with complementary methods to elucidate gene regulatory networks that underlie molecular mechanisms. Finally, we discuss open questions and challenges in the field and give our thoughts for future development and applications. The combination of single-cell RNA sequencing with metabolic RNA labelling enables a time-resolved view of transcriptional responses in individual cells. In this Primer, Erhard and Saliba et al. discuss metabolic labelling approaches and how to assess the temporal dynamics of transcriptional responses in different conditions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
syx发布了新的文献求助10
刚刚
xili发布了新的文献求助10
刚刚
任燕杰发布了新的文献求助10
刚刚
小蚂蚁发布了新的文献求助10
刚刚
bhc1993发布了新的文献求助10
1秒前
1秒前
1秒前
5号田的泥完成签到,获得积分10
2秒前
xun关闭了xun文献求助
2秒前
从容的如波完成签到,获得积分10
2秒前
Qn发布了新的文献求助10
3秒前
斯文败类应助.。。采纳,获得10
3秒前
甜美太英发布了新的文献求助10
3秒前
Damtree完成签到,获得积分10
3秒前
整齐的霸完成签到,获得积分10
3秒前
CrazyDiamond完成签到 ,获得积分10
3秒前
3秒前
牛腩面完成签到,获得积分10
3秒前
4秒前
4秒前
4秒前
5秒前
林涛完成签到,获得积分10
5秒前
5秒前
李爱国应助顺心的凌萱采纳,获得10
5秒前
5秒前
烜66发布了新的文献求助10
6秒前
耍酷幻莲发布了新的文献求助10
6秒前
暴躁的梦露完成签到,获得积分20
6秒前
6秒前
爆米花应助海绵采纳,获得10
7秒前
7秒前
牛腩面发布了新的文献求助10
7秒前
完美世界应助abcd_1067采纳,获得10
7秒前
英俊的铭应助科研顺利采纳,获得10
7秒前
Owen应助yyyyy采纳,获得10
8秒前
Damtree发布了新的文献求助10
8秒前
deansy发布了新的文献求助10
8秒前
Jaxine应助long采纳,获得60
8秒前
整齐的霸发布了新的文献求助10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5532190
求助须知:如何正确求助?哪些是违规求助? 4620957
关于积分的说明 14575781
捐赠科研通 4560709
什么是DOI,文献DOI怎么找? 2498949
邀请新用户注册赠送积分活动 1478927
关于科研通互助平台的介绍 1450190