清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

A Siamese Network With Node Convolution for Individualized Predictions Based on Connectivity Maps Extracted From Resting-State fMRI Data

静息状态功能磁共振成像 瓶颈 计算机科学 样本量测定 样品(材料) 人工智能 卷积(计算机科学) 神经影像学 节点(物理) 模式识别(心理学) 功能磁共振成像 深度学习 回归 均方误差 机器学习 数据挖掘 人工神经网络 统计 数学 医学 化学 结构工程 色谱法 精神科 工程类 放射科 嵌入式系统
作者
Le Xu,Hao Ma,Yun Guan,Jiangcong Liu,Huifang Huang,Yang Zhang,Lixia Tian
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:27 (11): 5418-5429 被引量:3
标识
DOI:10.1109/jbhi.2023.3304974
摘要

Deep learning has demonstrated great potential for objective diagnosis of neuropsychiatric disorders based on neuroimaging data, which includes the promising resting-state functional magnetic resonance imaging (RS-fMRI). However, the insufficient sample size has long been a bottleneck for deep model training for the purpose. In this study, we proposed a Siamese network with node convolution (SNNC) for individualized predictions based on RS-fMRI data. With the involvement of Siamese network, which uses sample pair (rather than a single sample) as input, the problem of insufficient sample size can largely be alleviated. To adapt to connectivity maps extracted from RS-fMRI data, we applied node convolution to each of the two branches of the Siamese network. For regression purposes, we replaced the contrastive loss in classic Siamese network with the mean square error loss and thus enabled Siamese network to quantitatively predict label differences. The label of a test sample can be predicted based on any of the training samples, by adding the label of the training sample to the predicted label difference between them. The final prediction for a test sample in this study was made by averaging the predictions based on each of the training samples. The performance of the proposed SNNC was evaluated with age and IQ predictions based on a public dataset (Cam-CAN). The results indicated that SNNC can make effective predictions even with a sample size of as small as 40, and SNNC achieved state-of-the-art accuracy among a variety of deep models and standard machine learning approaches.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
back you up应助科研通管家采纳,获得50
5秒前
back you up应助科研通管家采纳,获得30
5秒前
科研通AI5应助陶醉的手套采纳,获得10
21秒前
青山完成签到 ,获得积分10
48秒前
Jasper应助zzy采纳,获得10
59秒前
mzhang2完成签到 ,获得积分10
1分钟前
1分钟前
zzy发布了新的文献求助10
1分钟前
heher完成签到 ,获得积分10
1分钟前
yshj完成签到 ,获得积分10
1分钟前
顾矜应助科研通管家采纳,获得10
2分钟前
雪花完成签到 ,获得积分10
2分钟前
研友_8y2G0L完成签到,获得积分10
2分钟前
sssss完成签到,获得积分10
2分钟前
Leon完成签到 ,获得积分0
2分钟前
伊叶之丘完成签到 ,获得积分10
2分钟前
3分钟前
qyang完成签到 ,获得积分10
3分钟前
clock完成签到 ,获得积分10
3分钟前
充电宝应助nick采纳,获得10
3分钟前
3分钟前
3分钟前
nick发布了新的文献求助10
3分钟前
今后应助标致惋庭采纳,获得10
3分钟前
Singularity应助科研通管家采纳,获得10
4分钟前
Singularity应助科研通管家采纳,获得10
4分钟前
Singularity应助科研通管家采纳,获得10
4分钟前
浚稚完成签到 ,获得积分10
4分钟前
4分钟前
4分钟前
DrCuiTianjin完成签到 ,获得积分10
4分钟前
凤里完成签到 ,获得积分10
4分钟前
Alex-Song完成签到 ,获得积分0
4分钟前
taoxz521完成签到 ,获得积分10
4分钟前
CUN完成签到,获得积分10
4分钟前
ys1008完成签到,获得积分10
4分钟前
文献蚂蚁完成签到,获得积分10
4分钟前
Drizzle完成签到,获得积分10
4分钟前
洋芋饭饭完成签到,获得积分10
4分钟前
高分求助中
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Peking Blues // Liao San 300
Political Ideologies Their Origins and Impact 13 edition 240
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3800957
求助须知:如何正确求助?哪些是违规求助? 3346489
关于积分的说明 10329490
捐赠科研通 3063031
什么是DOI,文献DOI怎么找? 1681330
邀请新用户注册赠送积分活动 807474
科研通“疑难数据库(出版商)”最低求助积分说明 763714