有界函数
灵敏度(控制系统)
Neumann边界条件
欧米茄
趋化性
领域(数学分析)
同种类的
边界(拓扑)
数学
数学分析
纳维-斯托克斯方程组
纯数学
物理
组合数学
压缩性
化学
热力学
受体
工程类
量子力学
生物化学
电子工程
作者
Jiayi Han,Changchun Liu
摘要
In this paper, we deal with a two-species chemotaxis Navier-Stokes system with singular sensitivity under the homogeneous Neumann boundary conditions in a bounded domain $ \Omega \subset \mathbb{R}^2 $ with smooth boundary. For any appropriately regular initial data, we prove that the system has a global classical solution when $ \chi: = \max\{\chi_1,\chi_2\}<1 $. Moreover, we showed the global boundedness of the solution for sufficiently large $ b_1 $ and $ b_2 $.
科研通智能强力驱动
Strongly Powered by AbleSci AI