Auxiliary guidance manufacture and revealing potential mechanism of perovskite solar cell using machine learning

计算机科学 人工智能 光伏系统 机器学习 限制 深度学习 大数据 机制(生物学) 桥接(联网) 工业工程 数据挖掘 工程类 机械工程 计算机网络 哲学 认识论 电气工程
作者
Quan Zhang,Jianqi Wang,Guohua Liu
出处
期刊:Journal of Energy Chemistry [Elsevier BV]
卷期号:86: 146-157 被引量:7
标识
DOI:10.1016/j.jechem.2023.07.018
摘要

To promote the development of global carbon neutrality, perovskite solar cells (PSCs) have become a research hotspot in related fields. How to obtain PSCs with expected performance and explore the potential factors affecting device performance are the research priorities in related fields. Although some classical computational methods can facilitate material development, they typically require complex mathematical approximations and manual feature screening processes, which have certain subjectivity and one-sidedness, limiting the performance of the model. In order to alleviate the above challenges, this paper proposes a machine learning (ML) model based on neural networks. The model can assist both PSCs design and analysis of their potential mechanism, demonstrating enhanced and comprehensive auxiliary capabilities. To make the model have higher feasibility and fit the real experimental process more closely, this paper collects the corresponding real experimental data from numerous research papers to develop the model. Compared with other classical ML methods, the proposed model achieved better overall performance. Regarding analysis of underlying mechanism, the relevant laws explored by the model are consistent with the actual experiment results of existing articles. The model exhibits great potential to discover complex laws that are difficult for humans to discover directly. In addition, we also fabricated PSCs to verify the guidance ability of the model in this paper for real experiments. Eventually, the model achieved acceptable results. This work provides new insights into integrating ML methods and PSC design techniques, as well as bridging photovoltaic power generation technology and other fields.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
清爽代芹发布了新的文献求助10
刚刚
SimonLee发布了新的文献求助10
刚刚
皮皮虾完成签到 ,获得积分10
刚刚
齐多达发布了新的文献求助10
1秒前
炙热的宛丝完成签到,获得积分10
1秒前
apathy完成签到,获得积分10
2秒前
烟花应助衡阳采纳,获得10
4秒前
5秒前
隔壁小刘完成签到,获得积分10
5秒前
8秒前
8秒前
充电宝应助勿念那份执着采纳,获得10
9秒前
9秒前
桐桐应助邓涛采纳,获得10
10秒前
dong应助fanglin123采纳,获得20
10秒前
黑摄会阿Fay完成签到,获得积分10
10秒前
诸醉山发布了新的文献求助10
11秒前
沉默烨霖完成签到,获得积分10
12秒前
iNk应助玩命的大树采纳,获得20
12秒前
Peng发布了新的文献求助10
12秒前
爱吃橙子发布了新的文献求助10
13秒前
封25发布了新的文献求助10
14秒前
衡阳发布了新的文献求助10
14秒前
14秒前
脑洞疼应助山岛风行采纳,获得10
15秒前
16秒前
小白发布了新的文献求助20
16秒前
小可乐完成签到,获得积分10
17秒前
yyy完成签到 ,获得积分20
17秒前
17秒前
失眠的煎饼完成签到,获得积分20
18秒前
黄晓龙完成签到,获得积分10
18秒前
大个应助舒夜采纳,获得10
19秒前
直率一兰发布了新的文献求助20
19秒前
20秒前
20秒前
奥暖将发布了新的文献求助10
21秒前
SciGPT应助keeee采纳,获得10
21秒前
rumengzhuo完成签到,获得积分10
21秒前
认真飞瑶发布了新的文献求助10
22秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3964247
求助须知:如何正确求助?哪些是违规求助? 3509993
关于积分的说明 11150385
捐赠科研通 3243923
什么是DOI,文献DOI怎么找? 1792230
邀请新用户注册赠送积分活动 873681
科研通“疑难数据库(出版商)”最低求助积分说明 803884