Memory-Based Event-Triggered Control of Markov Jump Systems Under Hybrid Cyber Attacks: A Switching-Like Adaptive Law

服务拒绝攻击 计算机科学 自适应控制 理论(学习稳定性) 事件(粒子物理) 国家(计算机科学) 脆弱性(计算) 控制理论(社会学) 控制(管理) 计算机安全 互联网 人工智能 算法 机器学习 物理 量子力学 万维网
作者
Lan Yao,Xia Huang,Zhen Wang,Hao Shen
出处
期刊:IEEE Transactions on Automation Science and Engineering [Institute of Electrical and Electronics Engineers]
卷期号:21 (4): 6347-6357 被引量:13
标识
DOI:10.1109/tase.2023.3324649
摘要

This paper investigates the security control of a class of discrete-time Markov jump systems (DMJS). Due to the vulnerability of open communication networks to cyber attacks, a hybrid attack model is established to describe the situation where the DMJS is simultaneously suffered from deception attacks (DAs) and denial-of-service (DoS) attacks. To cope with the intermittent characteristic of DoS attacks, adaptive memory-based event-triggered control (AMETC) with a switching-like adaptive law is proposed. The designed AMETC includes historical triggered data in its triggering condition, hence allows data transmission to adjust adaptively based on the long-term change of system state. In addition, when DoS attacks are launched by attackers, the designed switching-like adaptive law can help decrease the threshold to trigger more sampled data so as to stabilize the DMJS. These features contribute to improve the tolerance of the whole control system to DoS attacks and DAs. On the basis of the AMETC, a novel Lyapunov functional is designed, and sufficient conditions are derived to ensure the asymptotic stability of DMJSs. This functional plays a crucial role in ensuring the negative definiteness of the LMIs in the stability condition. Based on the stability condition, a design algorithm for security control gains and event-trigger matrices is given. Finally, simulation results validate the effectiveness and superiority of the proposed mechanism. Note to Practitioners —This paper was motivated by existing results on memory-based event-triggered control (METC) and hybrid cyber attacks. The aim of this paper is to design a novel AMETC with a switching-like adaptive law to cope with the impact of hybrid attacks on system performance. In practical applications, if the event-triggered mechanism only considers the transient information of the system, it may lead to high peak responses of the control systems, resulting in a decrease in system performance. Therefore, the AMETC proposed in this paper considers both the transient information and the long-term state change of the system. It can adjust the data transmission rate adaptively and save transmission resources effectively. Additionally, based on the designed AMETC, sufficient conditions are obtained to ensure the safe and stable operation of DMJSs. Our theoretical analysis and simulation results show the effectiveness and superiority of the designed mechanism.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
怕孤独的傲丝完成签到,获得积分10
1秒前
爱喝蜜桃乌龙完成签到,获得积分10
1秒前
NexusExplorer应助adeno采纳,获得10
1秒前
等待黎明完成签到,获得积分10
1秒前
量子星尘发布了新的文献求助10
2秒前
wanci应助干净数据线采纳,获得10
2秒前
Olsters完成签到,获得积分10
3秒前
junc完成签到,获得积分10
3秒前
鸣蜩阿六完成签到,获得积分10
3秒前
stride21完成签到,获得积分10
3秒前
4秒前
蓝星完成签到,获得积分10
4秒前
4秒前
张书豪完成签到,获得积分10
4秒前
4秒前
纪靖雁完成签到 ,获得积分10
4秒前
HUA完成签到,获得积分20
5秒前
5秒前
JASON完成签到,获得积分10
7秒前
帅帅完成签到,获得积分10
8秒前
lily完成签到,获得积分10
8秒前
8秒前
9秒前
苦涩油麦菜完成签到,获得积分10
9秒前
G_G完成签到,获得积分10
9秒前
宅心仁厚完成签到 ,获得积分10
9秒前
若水完成签到,获得积分0
10秒前
lanbing802完成签到,获得积分10
11秒前
12秒前
lzqhmfm完成签到,获得积分0
12秒前
J_Xu完成签到 ,获得积分10
13秒前
13秒前
hyacinth11111完成签到,获得积分10
13秒前
量子星尘发布了新的文献求助10
14秒前
洛城l完成签到,获得积分10
14秒前
15秒前
九湖夷上完成签到,获得积分10
15秒前
此去经年完成签到 ,获得积分10
16秒前
gloval发布了新的文献求助10
17秒前
沙子完成签到,获得积分10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5606786
求助须知:如何正确求助?哪些是违规求助? 4691379
关于积分的说明 14867933
捐赠科研通 4711663
什么是DOI,文献DOI怎么找? 2543183
邀请新用户注册赠送积分活动 1508399
关于科研通互助平台的介绍 1472491