EASTER: Embedding Aggregation-based Heterogeneous Models Training in Vertical Federated Learning

嵌入 致盲 计算机科学 样品(材料) 局部搜索(优化) 联合学习 一般化 趋同(经济学) 局部最优 对比度(视觉) 机器学习 局部结构 人工智能 数学 政治学 数学分析 法学 经济增长 经济 色谱法 化学物理 化学 物理 梅德林
作者
Shuo Wang,Keke Gai,Jing Yu,Liehuang Zhu
出处
期刊:Cornell University - arXiv 被引量:2
标识
DOI:10.48550/arxiv.2310.13367
摘要

Vertical federated learning has garnered significant attention as it allows clients to train machine learning models collaboratively without sharing local data, which protects the client's local private data. However, existing VFL methods face challenges when dealing with heterogeneous local models among participants, which affects optimization convergence and generalization. To address this challenge, this paper proposes a novel approach called Vertical federated learning for training multiple Heterogeneous models (VFedMH). VFedMH focuses on aggregating the local embeddings of each participant's knowledge during forward propagation. To protect the participants' local embedding values, we propose an embedding protection method based on lightweight blinding factors. In particular, participants obtain local embedding using local heterogeneous models. Then the passive party, who owns only features of the sample, injects the blinding factor into the local embedding and sends it to the active party. The active party aggregates local embeddings to obtain global knowledge embeddings and sends them to passive parties. The passive parties then utilize the global embeddings to propagate forward on their local heterogeneous networks. However, the passive party does not own the sample labels, so the local model gradient cannot be calculated locally. To overcome this limitation, the active party assists the passive party in computing its local heterogeneous model gradients. Then, each participant trains their local model using the heterogeneous model gradients. The objective is to minimize the loss value of their respective local heterogeneous models. Extensive experiments are conducted to demonstrate that VFedMH can simultaneously train multiple heterogeneous models with heterogeneous optimization and outperform some recent methods in model performance.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
镓氧锌钇铀应助言宴采纳,获得10
1秒前
1秒前
1秒前
橙以澄完成签到,获得积分10
2秒前
xie完成签到,获得积分20
2秒前
li完成签到 ,获得积分10
2秒前
量子星尘发布了新的文献求助30
3秒前
瘦瘦的艳发布了新的文献求助10
3秒前
桐桐应助蓝丝绒采纳,获得10
3秒前
4秒前
乐融融发布了新的文献求助10
4秒前
有钱发布了新的文献求助10
4秒前
5秒前
fanzi发布了新的文献求助10
5秒前
KIE完成签到,获得积分10
5秒前
uu完成签到,获得积分10
6秒前
wlx发布了新的文献求助10
7秒前
习惯戒烟完成签到,获得积分10
7秒前
8秒前
8秒前
小马甲应助文博采纳,获得10
9秒前
wjy321发布了新的文献求助10
10秒前
neuarcher完成签到,获得积分0
10秒前
10秒前
张秉环完成签到 ,获得积分10
10秒前
11秒前
12秒前
123发布了新的文献求助10
12秒前
华仔应助习惯戒烟采纳,获得10
12秒前
上官若男应助怕黑宝马采纳,获得20
12秒前
斯文完成签到 ,获得积分10
13秒前
Jason完成签到,获得积分10
13秒前
shixiangsun完成签到,获得积分10
13秒前
14秒前
可可完成签到,获得积分10
14秒前
内向的跳跳糖完成签到,获得积分10
15秒前
星辰大海应助wlx采纳,获得10
15秒前
徐一航完成签到,获得积分20
15秒前
15秒前
去看海嘛发布了新的文献求助10
16秒前
高分求助中
合成生物食品制造技术导则,团体标准,编号:T/CITS 396-2025 1000
The Leucovorin Guide for Parents: Understanding Autism’s Folate 1000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Comparing natural with chemical additive production 500
Atlas of Liver Pathology: A Pattern-Based Approach 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5241249
求助须知:如何正确求助?哪些是违规求助? 4408034
关于积分的说明 13720910
捐赠科研通 4277007
什么是DOI,文献DOI怎么找? 2346903
邀请新用户注册赠送积分活动 1344015
关于科研通互助平台的介绍 1302114