MMHTSR: In-Air Handwriting Trajectory Sensing and Reconstruction Based on mmWave Radar

计算机科学 人工智能 笔迹 雷达跟踪器 雷达 弹道 电信 物理 天文
作者
Qin Chen,Zongyong Cui,Zheng Zhou,Yu Tian,Zongjie Cao
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
卷期号:11 (6): 10069-10083 被引量:2
标识
DOI:10.1109/jiot.2023.3325258
摘要

In-air handwriting necessitates consistent motion tracking, in contrast to millimeter-wave (mmWave) radar-based simple gesture recognition techniques. However, during long-duration gesture tracking, challenges, such as body motion interference and environmental clutter, become more pressing. Moreover, due to the lack of a supporting surface in in-air handwriting, slight arm tremors also can result in unsmooth trajectories. To address these challenges, this article proposes a two-stage processing framework called MMHTSR. In the first stage, the state-space equations are reestablished, and a locally correlated 2-D Gaussian process regression (GPR) algorithm is employed for interframe prediction. By incorporating uncertainty estimation, weights are assigned to the next frame data, effectively suppressing interference from nongestural targets. In the second stage, real-time smoothing and tracking of gesture trajectories are accomplished using a Kalman filter, followed by mapping the trajectories onto the Cartesian coordinate system. Finally, an end-to-end signal processing framework is deployed on a low-cost 60-GHz mmWave radar prototype, and gesture trajectory recognition is achieved using deep learning methods. Experimental results demonstrate that MMHTSR can accurately track motion gestures within the range of approximately 5–40 cm and successfully recognize 30 classes of in-air gesture trajectories, including uppercase letters A–Z and four interactive gesture actions. Furthermore, the proposed framework exhibits robust performance across various scenarios which shows its adaptability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
无语的凡梦完成签到,获得积分10
2秒前
Harper完成签到,获得积分10
2秒前
思源应助彩色亿先采纳,获得10
2秒前
小凯同学完成签到,获得积分10
3秒前
Akim应助ml采纳,获得10
3秒前
4秒前
小小太阳发布了新的文献求助20
5秒前
5秒前
9秒前
Eton完成签到,获得积分10
9秒前
在水一方应助Emma采纳,获得10
9秒前
bowen发布了新的文献求助10
9秒前
11秒前
14秒前
凡人丿完成签到 ,获得积分10
16秒前
风_feng完成签到,获得积分10
16秒前
17秒前
18秒前
老陈发布了新的文献求助10
18秒前
ml完成签到,获得积分20
19秒前
星河发布了新的文献求助100
20秒前
大模型应助老陈采纳,获得10
22秒前
25秒前
26秒前
27秒前
28秒前
彩色亿先发布了新的文献求助10
29秒前
29秒前
fenghp发布了新的文献求助10
31秒前
燕燕于飞发布了新的文献求助10
32秒前
Akim应助kepler采纳,获得10
32秒前
oreo发布了新的文献求助10
33秒前
康轲发布了新的文献求助30
34秒前
科研通AI2S应助小六采纳,获得10
34秒前
年轻的馒头完成签到,获得积分10
34秒前
茶茶完成签到,获得积分10
35秒前
酷波er应助将1采纳,获得10
36秒前
陈宇完成签到,获得积分10
37秒前
无花果应助比大家采纳,获得10
37秒前
oreo完成签到,获得积分10
40秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Encyclopedia of Geology (2nd Edition) 2000
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3780127
求助须知:如何正确求助?哪些是违规求助? 3325442
关于积分的说明 10223131
捐赠科研通 3040629
什么是DOI,文献DOI怎么找? 1668938
邀请新用户注册赠送积分活动 798857
科研通“疑难数据库(出版商)”最低求助积分说明 758623