P13.17.B PREDICTING KI-67 PROLIFERATION INDEX OF MENINGIOMAS ON MRI: A DEEP LEARNING METHOD BASED ON MULTI-MODAL INFORMATION

脑膜瘤 医学 磁共振成像 增殖指数 Ki-67 队列 放射科 曲线下面积 无线电技术 核医学 内科学 免疫组织化学
作者
Chen Chen,Jianguo Xu
出处
期刊:Neuro-oncology [Oxford University Press]
卷期号:25 (Supplement_2): ii105-ii105
标识
DOI:10.1093/neuonc/noad137.351
摘要

Abstract BACKGROUND A high Ki-67 index usually suggests accelerated cell proliferation of meningioma related to significant tumor growth as well as increased recurrent risk. This study aimed to explore the feasibility of deep learning method in predicting Ki-67 index of meningiomas with multi-modal information. MATERIAL AND METHODS Pre-treatment magnetic resonance images were retrospectively curated from 521 patients with surgically resected, pathologically confirmed meningiomas from three institutions. The cases were classified into low-expressed or high-expressed groups with a threshold of 5% of Ki-67 index. Predictive models were developed with multi-modal deep learning network by using traditional radiological findings, radiomics features extracted from tumors, and MRIs of meningiomas. The performance of the models was evaluated with area under curve (AUC), accuracy (ACC), sensitivity, and specificity. In addition, 127 cases with incidental small meningioma were recruited and followed up in 2 years, to investigate if the model could be used for predicting the tumor growth to assist in patient management. RESULTS Overall, 371 patients were enrolled for model development and primary analysis. The predictive model showed good performance with AUC of 0.798, ACC of 0.710, sensitivity of 0.613, and specificity of 0.806 in the internal test. It also achieved robustness in the external test cohort consisted of 150 cases, with AUC of 0.758, ACC of 0.661, sensitivity of 0.677, and specificity of 0.645. Moreover, model-predicted high Ki-67 tumor was associated with significant tumor volume growth happened in two years. CONCLUSION The predictive model can efficiently predict the Ki-67 index in meningioma patients, and showed good potential in facilitating the therapeutic decisions.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
小Z发布了新的文献求助10
2秒前
4秒前
阿锋发布了新的文献求助30
6秒前
森淼发布了新的文献求助10
7秒前
7秒前
852应助邓沐采纳,获得10
7秒前
天真彩虹完成签到 ,获得积分0
7秒前
8秒前
ding应助Ray采纳,获得10
9秒前
慕青应助Dia采纳,获得10
10秒前
舒心觅儿发布了新的文献求助10
11秒前
霸气问萍发布了新的文献求助50
12秒前
公西凝芙发布了新的文献求助10
12秒前
科研通AI2S应助达夫斯基采纳,获得10
12秒前
13秒前
13秒前
电容器完成签到 ,获得积分10
13秒前
量子星尘发布了新的文献求助10
13秒前
14秒前
17秒前
17秒前
zhan发布了新的文献求助10
18秒前
PEKOEA发布了新的文献求助10
18秒前
18秒前
19秒前
四季豆发布了新的文献求助10
20秒前
20秒前
顾矜应助yyyyy语言采纳,获得10
20秒前
21秒前
woleaisa发布了新的文献求助30
21秒前
可爱的函函应助pishuang采纳,获得10
21秒前
11发布了新的文献求助50
22秒前
Ava应助公西凝芙采纳,获得10
23秒前
ocean发布了新的文献求助10
24秒前
24秒前
Kkkkk发布了新的文献求助10
25秒前
rwq完成签到 ,获得积分10
26秒前
zhy完成签到,获得积分10
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1000
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5481754
求助须知:如何正确求助?哪些是违规求助? 4582718
关于积分的说明 14386482
捐赠科研通 4511487
什么是DOI,文献DOI怎么找? 2472364
邀请新用户注册赠送积分活动 1458616
关于科研通互助平台的介绍 1432176