已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Prediction of bond strength of reinforced concrete structures based on feature selection and GWO-SVR model

支持向量机 特征选择 多层感知器 线性回归 相关系数 计算机科学 水准点(测量) 人工智能 人工神经网络 模式识别(心理学) 数学 机器学习 大地测量学 地理
作者
Congcong Fan,Yuanxun Zheng,Shaoqiang Wang,Junjie Ma
出处
期刊:Construction and Building Materials [Elsevier BV]
卷期号:400: 132602-132602 被引量:26
标识
DOI:10.1016/j.conbuildmat.2023.132602
摘要

Bond strength, as a mechanical property of reinforced concrete (RC) structures, is a crucial factor affecting the force characteristics of RC structures. In order to assess the load-bearing and deformation capacity of RC structures, it is essential to develop a model that can accurately predict the bond strength of RC structures. Therefore, a prediction model based on Random Forest (RF) feature selection and Grey Wolf algorithm optimized (GWO) support vector regression (GWO-SVR) is synthesized in this paper. An extensive database containing 1008 bonded slip test samples was first collected, and various feature parameters were finally preprocessed to filter 935 sets of test data. Next, the optimized support vector machine was trained using the training set data using the GWO-optimized SVR method. Meanwhile, the prediction accuracy of the model was evaluated using the integrated absolute error (IAE), the coefficient of determination (R2), and the mean absolute error (MAE). The model with a good prediction effect can predict the bond strength of unknown tests. When the sample size is small and the number of features is extensive, redundant features must be filtered out before the model prediction. The model prediction after feature selection is significantly better than that before training. The results show that the GWO-SVR model proposed in this study has a higher prediction accuracy than the existing bond strength model. The prediction results of the GWO-SVR model (Test set: R2 = 0.9547, MAE = 1.2487 MPa, IAE = 12.761%) outperform benchmark models such as the multilayer perceptron (MLP) and linear regression (LR). According to the training accuracy of the regression model, it can be found that the GWO-SVR model has good generalization performance (Training set: R2 = 0.9562, MAE = 1.1203 MPa, IAE = 12.182%). In addition, different optimization-seeking algorithms, kernel function types, and machine learning models have significant effects on the prediction results of the ultimate bond strength. In addition, the compressive strength of concrete was verified to be the most sensitive variable for the bond strength of RC structures using RF and Pearson correlation coefficients. The model presented in this study can also be extended to other regression issues.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
诸葛小哥哥完成签到 ,获得积分10
1秒前
1秒前
陈旧完成签到,获得积分10
2秒前
Thanatos完成签到,获得积分10
2秒前
yuqinghui98完成签到 ,获得积分10
2秒前
爱吃猫的鱼完成签到,获得积分10
2秒前
追寻哲瀚完成签到 ,获得积分10
3秒前
xiao完成签到 ,获得积分10
3秒前
super完成签到,获得积分10
4秒前
asaki完成签到,获得积分10
5秒前
小瓜完成签到 ,获得积分10
5秒前
Lyl完成签到 ,获得积分10
5秒前
满眼星辰发布了新的文献求助10
5秒前
aishiying完成签到,获得积分10
5秒前
RRRZZ完成签到 ,获得积分10
5秒前
耶格尔完成签到 ,获得积分10
6秒前
WangWaud完成签到,获得积分10
6秒前
布可完成签到,获得积分10
6秒前
姆姆没买完成签到 ,获得积分10
6秒前
研友_ngKdbn发布了新的文献求助10
6秒前
吴一一完成签到,获得积分10
6秒前
糖醋里脊加醋完成签到 ,获得积分10
7秒前
m李完成签到 ,获得积分10
7秒前
阿俊完成签到 ,获得积分10
7秒前
7秒前
xifanfan完成签到 ,获得积分10
7秒前
你喜欢什么样子的我演给你看完成签到 ,获得积分10
8秒前
科研通AI5应助he采纳,获得10
8秒前
迷路的台灯完成签到 ,获得积分10
9秒前
Chaos完成签到 ,获得积分10
9秒前
孙文杰完成签到 ,获得积分10
10秒前
不再挨训完成签到 ,获得积分10
10秒前
liuying2发布了新的文献求助10
10秒前
3080完成签到 ,获得积分10
11秒前
小蘑菇应助文献杀手采纳,获得10
12秒前
SS完成签到,获得积分0
12秒前
嘟嘟嘟嘟完成签到 ,获得积分10
12秒前
zsl完成签到 ,获得积分10
14秒前
Mark完成签到 ,获得积分10
14秒前
悦耳的芷珊完成签到,获得积分10
14秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
Images that translate 500
引进保护装置的分析评价八七年国外进口线路等保护运行情况介绍 500
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3840608
求助须知:如何正确求助?哪些是违规求助? 3382636
关于积分的说明 10525610
捐赠科研通 3102399
什么是DOI,文献DOI怎么找? 1708788
邀请新用户注册赠送积分活动 822685
科研通“疑难数据库(出版商)”最低求助积分说明 773472

今日热心研友

注:热心度 = 本日应助数 + 本日被采纳获取积分÷10