伦瓦提尼
罗咪酯肽
医学
癌症研究
抗药性
药理学
肿瘤科
组蛋白脱乙酰基酶
索拉非尼
生物
肝细胞癌
组蛋白
生物化学
微生物学
基因
作者
Lei Sun,Arabella Wan,Shijia Yan,Ruonian Liu,Jiarui Li,Zhuolong Zhou,Ruirui Wu,Dongshi Chen,Xianzhang Bu,Jingxing Ou,Kai Li,Xiongbin Lu,Guohui Wan,Zunfu Ke
标识
DOI:10.1016/j.apsb.2023.09.015
摘要
Lenvatinib, a second-generation multi-receptor tyrosine kinase inhibitor approved by the FDA for first-line treatment of advanced liver cancer, facing limitations due to drug resistance. Here, we applied a multidimensional, high-throughput screening platform comprising patient-derived resistant liver tumor cells (PDCs), organoids (PDOs), and xenografts (PDXs) to identify drug susceptibilities for conquering lenvatinib resistance in clinically relevant settings. Expansion and passaging of PDCs and PDOs from resistant patient liver tumors retained functional fidelity to lenvatinib treatment, expediting drug repurposing screens. Pharmacological screening identified romidepsin, YM155, apitolisib, NVP-TAE684 and dasatinib as potential antitumor agents in lenvatinib-resistant PDC and PDO models. Notably, romidepsin treatment enhanced antitumor response in syngeneic mouse models by triggering immunogenic tumor cell death and blocking the EGFR signaling pathway. A combination of romidepsin and immunotherapy achieved robust and synergistic antitumor effects against lenvatinib resistance in humanized immunocompetent PDX models. Collectively, our findings suggest that patient-derived liver cancer models effectively recapitulate lenvatinib resistance observed in clinical settings and expedite drug discovery for advanced liver cancer, providing a feasible multidimensional platform for personalized medicine.
科研通智能强力驱动
Strongly Powered by AbleSci AI