Incremental Approach for Early Time Series Classification

计算机科学 系列(地层学) 时间序列 渐进式学习 数据挖掘 机器学习 任务(项目管理) 人工智能 工程类 生物 古生物学 系统工程
作者
Lin Miao,Guangzhao Luo,Xiulei Liu
标识
DOI:10.1109/isoirs59890.2023.00050
摘要

Early classification of time series data aims to classify a time series with high accuracy as early as possible. This paper provides a concise yet comprehensive overview of early classification techniques for time series data, specifically focusing on two widely adopted approaches: the multi-model approach and the shapelet-based approach. By examining the limitations associated with these approaches, this study introduces an innovative incremental approach as an alternative. The incremental approach exhibits the ability to learn and adapt the classification model to new data while retaining existing knowledge, without the need to build new models from scratch for each classification task. In the experiments with time series “occupancy detection” dataset, time series approach, shapelet approach and incremental approach have been implemented. The experimental results clearly demonstrate that the incremental approach outperforms the other methods in terms of both accuracy and earliness. However, it is important to note that the incremental approach exhibited a higher false positive rate, indicating the presence of misclassifications that warrant further investigation and refinement. This work shows that incremental approach is feasible and efficient for early classification of time series, but also shows room for improvement. Overall, this study contributes to the understanding of early classification techniques for time series data, paving the way for improved decision-making and analysis in various domains reliant on timely and accurate classification of time series data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
尊敬的怀寒给尊敬的怀寒的求助进行了留言
2秒前
大模型应助科研通管家采纳,获得10
2秒前
深情安青应助科研通管家采纳,获得10
2秒前
浮游应助科研通管家采纳,获得10
2秒前
酷波er应助科研通管家采纳,获得10
2秒前
李健应助科研通管家采纳,获得10
2秒前
2秒前
2秒前
shine发布了新的文献求助10
3秒前
1024发布了新的文献求助10
3秒前
hs完成签到,获得积分10
3秒前
4秒前
步云乱完成签到,获得积分10
5秒前
无花果应助morning采纳,获得10
6秒前
6秒前
6秒前
CipherSage应助YY采纳,获得10
6秒前
斯文败类应助木光采纳,获得10
9秒前
9秒前
刘思琪发布了新的文献求助10
9秒前
王欧尼发布了新的文献求助10
11秒前
11秒前
12秒前
xxxx发布了新的文献求助10
12秒前
学术laji发布了新的文献求助10
13秒前
隐形曼青应助haiou采纳,获得10
13秒前
13秒前
向翰怡关注了科研通微信公众号
14秒前
李健应助RFlord采纳,获得10
14秒前
shine完成签到,获得积分10
15秒前
15秒前
科研通AI5应助sml采纳,获得150
17秒前
六六六完成签到 ,获得积分10
17秒前
XCL应助坦率夕阳采纳,获得10
19秒前
zs发布了新的文献求助10
19秒前
小熊熊完成签到,获得积分10
21秒前
21秒前
鸣笛应助KiraShaw采纳,获得20
22秒前
所所应助飞快的映菱采纳,获得10
22秒前
汉堡包应助崔正采纳,获得10
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Determination of the boron concentration in diamond using optical spectroscopy 600
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
肥厚型心肌病新致病基因突变的筛选验证和功能研究 500
Founding Fathers The Shaping of America 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 460
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4562829
求助须知:如何正确求助?哪些是违规求助? 3987756
关于积分的说明 12347664
捐赠科研通 3658600
什么是DOI,文献DOI怎么找? 2015932
邀请新用户注册赠送积分活动 1050487
科研通“疑难数据库(出版商)”最低求助积分说明 938478