On the visual detection of non-natural records in streamflow time series: challenges and impacts

水流 异常(物理) 环境科学 插值(计算机图形学) 气候学 系列(地层学) 噪音(视频) 目视检查 时间序列 计算机科学 统计 地质学 地理 数学 流域 地图学 动画 古生物学 物理 计算机图形学(图像) 人工智能 图像(数学) 凝聚态物理
作者
Laurent Strohmenger,Éric Sauquet,Claire Bernard,Jérémie Bonneau,Flora Branger,Amélie Bresson,Pierre Brigode,Rémy Buzier,Olivier Delaigue,Alexandre Devers,Guillaume Évin,Maïté Fournier,Shu-Chen Hsu,Sandra Lanini,Alban de Lavenne,Thibault Lemaitre-Basset,Claire Magand,Guilherme Mendoza Guimarães,Max Mentha,Simon Munier,Charles Perrin,Tristan Podechard,Léo Rouchy,Malak Sadki,Myriam Soutif-Bellenger,François Tilmant,Yves Tramblay,Anne-Lise Véron,Jean‐Philippe Vidal,Guillaume Thirel
出处
期刊:Hydrology and Earth System Sciences [Copernicus Publications]
卷期号:27 (18): 3375-3391 被引量:3
标识
DOI:10.5194/hess-27-3375-2023
摘要

Abstract. Large datasets of long-term streamflow measurements are widely used to infer and model hydrological processes. However, streamflow measurements may suffer from what users can consider anomalies, i.e. non-natural records that may be erroneous streamflow values or anthropogenic influences that can lead to misinterpretation of actual hydrological processes. Since identifying anomalies is time consuming for humans, no study has investigated their proportion, temporal distribution, and influence on hydrological indicators over large datasets. This study summarizes the results of a large visual inspection campaign of 674 streamflow time series in France made by 43 evaluators, who were asked to identify anomalies falling under five categories, namely, linear interpolation, drops, noise, point anomalies, and other. We examined the evaluators' individual behaviour in terms of severity and agreement with other evaluators, as well as the temporal distributions of the anomalies and their influence on commonly used hydrological indicators. We found that inter-evaluator agreement was surprisingly low, with an average of 12 % of overlapping periods reported as anomalies. These anomalies were mostly identified as linear interpolation and noise, and they were more frequently reported during the low-flow periods in summer. The impact of cleaning data from the identified anomaly values was higher on low-flow indicators than on high-flow indicators, with change rates lower than 5 % most of the time. We conclude that the identification of anomalies in streamflow time series is highly dependent on the aims and skills of each evaluator, which raises questions about the best practices to adopt for data cleaning.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
深情安青应助陈一晨111采纳,获得10
1秒前
1秒前
川口督kie完成签到,获得积分10
1秒前
2秒前
Michaelfall完成签到,获得积分10
2秒前
2秒前
皮尤尤发布了新的文献求助10
4秒前
多多完成签到,获得积分10
5秒前
Kenny发布了新的文献求助10
5秒前
MG_aichy完成签到,获得积分10
5秒前
77驳回了块块应助
5秒前
Van发布了新的文献求助10
6秒前
orixero应助科研通管家采纳,获得10
8秒前
科研通AI5应助科研通管家采纳,获得10
8秒前
小蘑菇应助科研通管家采纳,获得30
8秒前
CodeCraft应助科研通管家采纳,获得10
8秒前
Hello应助科研通管家采纳,获得10
8秒前
桐桐应助科研通管家采纳,获得10
8秒前
小虫学长应助科研通管家采纳,获得10
8秒前
Lucas应助科研通管家采纳,获得10
8秒前
8秒前
郭璠发布了新的文献求助10
8秒前
8秒前
冯微微完成签到,获得积分10
9秒前
星辰大海应助整齐的泽洋采纳,获得10
11秒前
阿坤发布了新的文献求助10
11秒前
酷波er应助欣喜的冥王星采纳,获得10
12秒前
脑洞疼应助皮尤尤采纳,获得10
12秒前
13秒前
amigo完成签到 ,获得积分10
14秒前
yuanzhang完成签到,获得积分10
14秒前
16秒前
16秒前
dox应助郭璠采纳,获得10
18秒前
18秒前
21秒前
呆萌擎宇发布了新的文献求助10
21秒前
22秒前
22秒前
AAAAA应助是真的不吃鱼采纳,获得20
22秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Visceral obesity is associated with clinical and inflammatory features of asthma: A prospective cohort study 300
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Engineering the boosting of the magnetic Purcell factor with a composite structure based on nanodisk and ring resonators 240
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3838514
求助须知:如何正确求助?哪些是违规求助? 3380889
关于积分的说明 10516101
捐赠科研通 3100459
什么是DOI,文献DOI怎么找? 1707506
邀请新用户注册赠送积分活动 821794
科研通“疑难数据库(出版商)”最低求助积分说明 772947