Intelligent solubility estimation of gaseous hydrocarbons in ionic liquids

支持向量机 溶解度 离子液体 人工神经网络 粒子群优化 计算机科学 丙烷 甲烷 人工智能 生物系统 机器学习 工艺工程 化学 工程类 有机化学 生物 催化作用
作者
B. Basirat,Fariborz Shaahmadi,Seyed Sorosh Mirfasihi,Abolfazl Jomekian,Bahamin Bazooyar
出处
期刊:Petroleum [Elsevier BV]
卷期号:10 (1): 109-123 被引量:2
标识
DOI:10.1016/j.petlm.2023.09.002
摘要

The research focuses on evaluating how well new solvents attract light hydrocarbons, such as propane, methane, and ethane, in natural gas sweetening units. It is important to accurately determine the solubility of hydrocarbons in these solvents to effectively manage the sweetening process. To address this challenge, the study proposes using advanced empirical models based on artificial intelligence techniques like Multi-Layer Artificial Neural Network (ML-ANN), Support Vector Machines (SVM), and Least Square Support Vector Machine (LSSVM). The parameters for the SVM and LSSVM models are estimated using optimization methods like Genetic Algorithm (GA), Particle Swarm Optimization (PSO), and Shuffled Complex Evolution (SCE). Data on the solubility of propane, methane, and ethane in various ionic liquids are collected from reliable literature sources to create a comprehensive database. The proposed artificial intelligence models show great accuracy in predicting hydrocarbon solubility in ionic liquids. Among these, the hybrid SVM models perform exceptionally well, with the PSO-SVM hybrid model being particularly efficient computationally. To ensure a comprehensive analysis, different examples of hydrocarbons and their order are included. Additionally, a comparative analysis is conducted to compare the AI models with the thermodynamic COSMO-RS model for solubility analysis. The results demonstrate the superiority of the AI models, as they outperform traditional thermodynamic models across a wide range of data. In conclusion, this study introduces advanced artificial intelligence algorithms such as ML-ANN, SVM, and LSSVM in accurately estimating the solubility of hydrocarbons in ionic liquids. The incorporation of optimization techniques and variations in hydrocarbon examples improves the accuracy, precision, and reliability of these intelligent models. These findings highlight the significant potential of AI-based approaches in solubility analysis and emphasize their superiority over traditional thermodynamic models.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
红叶发布了新的文献求助10
1秒前
bobo完成签到 ,获得积分10
1秒前
曹佳琦发布了新的文献求助10
1秒前
huy完成签到 ,获得积分10
1秒前
fissh完成签到,获得积分10
1秒前
1秒前
zwl发布了新的文献求助10
2秒前
2秒前
Winnie发布了新的文献求助10
2秒前
沉静的电源完成签到,获得积分20
2秒前
中岛悠斗完成签到,获得积分10
3秒前
Charon完成签到,获得积分10
3秒前
张琦完成签到,获得积分10
3秒前
自然的思松完成签到,获得积分10
4秒前
4秒前
共享精神应助彩色的哲瀚采纳,获得10
4秒前
jerry完成签到 ,获得积分10
4秒前
白云完成签到,获得积分10
4秒前
布布完成签到,获得积分10
5秒前
尉迟剑心发布了新的文献求助10
5秒前
王五完成签到,获得积分10
5秒前
wuchang2617完成签到,获得积分10
5秒前
Charon发布了新的文献求助10
6秒前
纯真的柔发布了新的文献求助10
6秒前
yanyimeng完成签到,获得积分10
6秒前
俞若枫完成签到,获得积分10
6秒前
SC武发布了新的文献求助10
6秒前
攀登转化高峰完成签到,获得积分10
7秒前
7秒前
结实康发布了新的文献求助10
7秒前
8秒前
8秒前
sunce1990完成签到 ,获得积分10
8秒前
8秒前
CipherSage应助留胡子的项链采纳,获得10
9秒前
代骜珺完成签到,获得积分10
9秒前
斯文败类应助XXBB采纳,获得10
11秒前
野性的曼香完成签到,获得积分10
11秒前
JamesPei应助纯真的柔采纳,获得10
11秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
新时代大学生思想政治教育主题研究 200
New Syntheses with Carbon Monoxide 200
Faber on mechanics of patent claim drafting 200
Quanterion Automated Databook NPRD-2023 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3834484
求助须知:如何正确求助?哪些是违规求助? 3376988
关于积分的说明 10496011
捐赠科研通 3096514
什么是DOI,文献DOI怎么找? 1704953
邀请新用户注册赠送积分活动 820381
科研通“疑难数据库(出版商)”最低求助积分说明 772011