Dual-Energy CT Deep Learning Radiomics to Predict Macrotrabecular-Massive Hepatocellular Carcinoma

医学 列线图 肝细胞癌 接收机工作特性 逻辑回归 无线电技术 放射科 数据集 核医学 人工智能 肿瘤科 内科学 计算机科学
作者
Mengsi Li,Yaheng Fan,Huayu You,Chao Li,Ma Luo,Jing Zhou,Anqi Li,Lina Zhang,Yu Xiao,Weiwei Deng,Jinhui Zhou,Dingyue Zhang,Zhongping Zhang,Haimei Chen,Yuanqiang Xiao,Bingsheng Huang,Jin Wang
出处
期刊:Radiology [Radiological Society of North America]
卷期号:308 (2) 被引量:24
标识
DOI:10.1148/radiol.230255
摘要

Background It is unknown whether the additional information provided by multiparametric dual-energy CT (DECT) could improve the noninvasive diagnosis of the aggressive macrotrabecular-massive (MTM) subtype of hepatocellular carcinoma (HCC). Purpose To evaluate the diagnostic performance of dual-phase contrast-enhanced multiparametric DECT for predicting MTM HCC. Materials and Methods Patients with histopathologic examination-confirmed HCC who underwent contrast-enhanced DECT between June 2019 and June 2022 were retrospectively recruited from three independent centers (center 1, training and internal test data set; centers 2 and 3, external test data set). Radiologic features were visually analyzed and combined with clinical information to establish a clinical-radiologic model. Deep learning (DL) radiomics models were based on DL features and handcrafted features extracted from virtual monoenergetic images and material composition images on dual phase using binary least absolute shrinkage and selection operators. A DL radiomics nomogram was developed using multivariable logistic regression analysis. Model performance was evaluated with the area under the receiver operating characteristic curve (AUC), and the log-rank test was used to analyze recurrence-free survival. Results A total of 262 patients were included (mean age, 54 years ± 12 [SD]; 225 men [86%]; training data set, n = 146 [56%]; internal test data set, n = 35 [13%]; external test data set, n = 81 [31%]). The DL radiomics nomogram better predicted MTM than the clinical-radiologic model (AUC = 0.91 vs 0.77, respectively, for the training set [P < .001], 0.87 vs 0.72 for the internal test data set [P = .04], and 0.89 vs 0.79 for the external test data set [P = .02]), with similar sensitivity (80% vs 87%, respectively; P = .63) and higher specificity (90% vs 63%; P < .001) in the external test data set. The predicted positive MTM groups based on the DL radiomics nomogram had shorter recurrence-free survival than predicted negative MTM groups in all three data sets (training data set, P = .04; internal test data set, P = .01; and external test data set, P = .03). Conclusion A DL radiomics nomogram derived from multiparametric DECT accurately predicted the MTM subtype in patients with HCC. © RSNA, 2023 Supplemental material is available for this article. See also the editorial by Chu and Fishman in this issue.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
在水一方应助li采纳,获得30
刚刚
CipherSage应助xxiao采纳,获得10
刚刚
刚刚
晴乐令发布了新的文献求助10
1秒前
鲤鱼完成签到 ,获得积分10
4秒前
shenzhou9完成签到,获得积分10
4秒前
5秒前
5秒前
何禾完成签到,获得积分10
6秒前
6秒前
科研通AI5应助Stalin采纳,获得30
7秒前
7秒前
华仔应助shenzhou9采纳,获得10
8秒前
热心市民赵先生完成签到,获得积分10
10秒前
samtol完成签到,获得积分10
10秒前
lht完成签到 ,获得积分10
10秒前
Mina完成签到,获得积分10
10秒前
10秒前
wanci应助洋芋锅巴采纳,获得10
11秒前
医道无名发布了新的文献求助50
11秒前
爆米花应助fangze采纳,获得10
12秒前
12秒前
13秒前
邓东浩发布了新的文献求助10
13秒前
研友_RLNzvL完成签到,获得积分10
14秒前
喜宝完成签到 ,获得积分10
15秒前
JoJo发布了新的文献求助10
15秒前
16秒前
fafa完成签到 ,获得积分10
17秒前
敦敦发布了新的文献求助10
17秒前
细腻的雅山完成签到,获得积分10
18秒前
迷糊的七七完成签到,获得积分10
18秒前
现实的又夏完成签到,获得积分10
19秒前
hhhhhh完成签到,获得积分20
20秒前
CipherSage应助落寞怀蕊采纳,获得10
20秒前
20秒前
开心的皮皮虾完成签到,获得积分10
21秒前
延胡索发布了新的文献求助10
21秒前
Luna发布了新的文献求助10
22秒前
22秒前
高分求助中
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Peking Blues // Liao San 300
E-commerce live streaming impact analysis based on stimulus-organism response theory 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3801238
求助须知:如何正确求助?哪些是违规求助? 3346865
关于积分的说明 10330869
捐赠科研通 3063228
什么是DOI,文献DOI怎么找? 1681450
邀请新用户注册赠送积分活动 807600
科研通“疑难数据库(出版商)”最低求助积分说明 763743