Automated quantification of PET/CT skeletal tumor burden in prostate cancer using artificial intelligence: The PET index

医学 前列腺癌 核医学 PET-CT 前列腺 卷积神经网络 放射科 正电子发射断层摄影术 癌症 人工智能 内科学 计算机科学
作者
Sarah Lindgren Belal,Martin Larsson,Jorun Holm,Karen Middelbo Buch‐Olsen,Jens Benn Sørensen,Anders Bjartell,Lars Edenbrandt,Elin Trägårdh
出处
期刊:European Journal of Nuclear Medicine and Molecular Imaging [Springer Science+Business Media]
卷期号:50 (5): 1510-1520 被引量:5
标识
DOI:10.1007/s00259-023-06108-4
摘要

Consistent assessment of bone metastases is crucial for patient management and clinical trials in prostate cancer (PCa). We aimed to develop a fully automated convolutional neural network (CNN)-based model for calculating PET/CT skeletal tumor burden in patients with PCa.A total of 168 patients from three centers were divided into training, validation, and test groups. Manual annotations of skeletal lesions in [18F]fluoride PET/CT scans were used to train a CNN. The AI model was evaluated in 26 patients and compared to segmentations by physicians and to a SUV 15 threshold. PET index representing the percentage of skeletal volume taken up by lesions was estimated.There was no case in which all readers agreed on prevalence of lesions that the AI model failed to detect. PET index by the AI model correlated moderately strong to physician PET index (mean r = 0.69). Threshold PET index correlated fairly with physician PET index (mean r = 0.49). The sensitivity for lesion detection was 65-76% for AI, 68-91% for physicians, and 44-51% for threshold depending on which physician was considered reference.It was possible to develop an AI-based model for automated assessment of PET/CT skeletal tumor burden. The model's performance was superior to using a threshold and provides fully automated calculation of whole-body skeletal tumor burden. It could be further developed to apply to different radiotracers. Objective scan evaluation is a first step toward developing a PET/CT imaging biomarker for PCa skeletal metastases.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
fuffu发布了新的文献求助10
刚刚
liars完成签到 ,获得积分10
1秒前
磊磊完成签到,获得积分10
1秒前
king完成签到 ,获得积分10
2秒前
9秒前
wanghao完成签到 ,获得积分10
10秒前
YY完成签到,获得积分10
11秒前
沈惠映完成签到 ,获得积分10
13秒前
煮饭吃Zz完成签到 ,获得积分10
15秒前
敏er完成签到,获得积分10
23秒前
sciforce发布了新的文献求助10
29秒前
ygr完成签到,获得积分0
29秒前
micaixing2006完成签到,获得积分10
29秒前
31秒前
几几完成签到,获得积分10
35秒前
阿鑫完成签到 ,获得积分10
38秒前
科研通AI2S应助xun采纳,获得10
41秒前
sciforce完成签到,获得积分10
56秒前
Emma完成签到,获得积分10
56秒前
LYY发布了新的文献求助10
1分钟前
郭元强完成签到,获得积分10
1分钟前
Yes0419完成签到,获得积分10
1分钟前
西瓜瓜完成签到,获得积分10
1分钟前
1分钟前
神勇的青亦完成签到 ,获得积分10
1分钟前
he完成签到 ,获得积分10
1分钟前
怡然白竹完成签到 ,获得积分10
1分钟前
1分钟前
尼克拉倒完成签到,获得积分10
1分钟前
1分钟前
MADAO完成签到 ,获得积分10
1分钟前
文艺的初南完成签到 ,获得积分10
1分钟前
NexusExplorer应助孤独尔安采纳,获得10
1分钟前
迅速千愁完成签到 ,获得积分10
1分钟前
luluyang完成签到 ,获得积分10
1分钟前
Don完成签到 ,获得积分10
1分钟前
bkagyin应助StonesKing采纳,获得10
1分钟前
今后应助科研通管家采纳,获得10
1分钟前
cdercder应助科研通管家采纳,获得10
1分钟前
cdercder应助科研通管家采纳,获得10
1分钟前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
Images that translate 500
引进保护装置的分析评价八七年国外进口线路等保护运行情况介绍 500
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3840878
求助须知:如何正确求助?哪些是违规求助? 3382770
关于积分的说明 10526526
捐赠科研通 3102659
什么是DOI,文献DOI怎么找? 1708930
邀请新用户注册赠送积分活动 822781
科研通“疑难数据库(出版商)”最低求助积分说明 773632