控制理论(社会学)                        
                
                                
                        
                            芝诺悖论                        
                
                                
                        
                            理论(学习稳定性)                        
                
                                
                        
                            Lyapunov稳定性                        
                
                                
                        
                            订单(交换)                        
                
                                
                        
                            分数阶微积分                        
                
                                
                        
                            机制(生物学)                        
                
                                
                        
                            衍生工具(金融)                        
                
                                
                        
                            计算机科学                        
                
                                
                        
                            多智能体系统                        
                
                                
                        
                            数学                        
                
                                
                        
                            李雅普诺夫函数                        
                
                                
                        
                            平衡(能力)                        
                
                                
                        
                            稳定性理论                        
                
                                
                        
                            控制(管理)                        
                
                                
                        
                            应用数学                        
                
                                
                        
                            人工智能                        
                
                                
                        
                            非线性系统                        
                
                                
                        
                            经济                        
                
                                
                        
                            物理                        
                
                                
                        
                            心理学                        
                
                                
                        
                            机器学习                        
                
                                
                        
                            几何学                        
                
                                
                        
                            神经科学                        
                
                                
                        
                            财务                        
                
                                
                        
                            金融经济学                        
                
                                
                        
                            量子力学                        
                
                        
                    
                    
            出处
            
                                    期刊:Fractal and fractional
                                                         [Multidisciplinary Digital Publishing Institute]
                                                        日期:2023-03-17
                                                        卷期号:7 (3): 268-268
                                                        被引量:3
                                 
         
        
    
            
            标识
            
                                    DOI:10.3390/fractalfract7030268
                                    
                                
                                 
         
        
                
            摘要
            
            This paper deals with the problem of group consensus for a fractional-order multi-agent system (FOMAS) without considering the intergroup balance condition. By adopting a dynamic event-triggered mechanism, the updating frequency of control input is significantly reduced while the consensus performance is maintained. By utilizing the Lyapunov direct method and the properties of a fractional-order derivative, several novel criteria are presented for analyzing the Mittag–Leffler stability of error systems and excluding the Zeno behavior in the triggering mechanism. An example and its simulations are demonstrated to prove the validity of the theoretical results.
         
            
 
                 
                
                    
                    科研通智能强力驱动
Strongly Powered by AbleSci AI