已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Mask-Guided Target Node Feature Learning and Dynamic Detailed Feature Enhancement for lncRNA-Disease Association Prediction

特征(语言学) 人工智能 特征学习 图形 计算机科学 推论 自编码 编码 残余物 模式识别(心理学) 节点(物理) 深度学习 机器学习 理论计算机科学 算法 工程类 生物 生物化学 基因 结构工程 语言学 哲学
作者
Ping Xuan,Wei Wang,Hui Cui,Shuai Wang,Toshiya Nakaguchi,Tiangang Zhang
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
卷期号:64 (16): 6662-6675
标识
DOI:10.1021/acs.jcim.4c00652
摘要

Identifying new relevant long noncoding RNAs (lncRNAs) for various human diseases can facilitate the exploration of the causes and progression of these diseases. Recently, several graph inference methods have been proposed to predict disease-related lncRNAs by exploiting the topological structure and node attributes within graphs. However, these methods did not prioritize the target lncRNA and disease nodes over auxiliary nodes like miRNA nodes, potentially limiting their ability to fully utilize the features of the target nodes. We propose a new method, mask-guided target node feature learning and dynamic detailed feature enhancement for lncRNA-disease association prediction (MDLD), to enhance node feature learning for improved lncRNA-disease association prediction. First, we designed a heterogeneous graph masked transformer autoencoder to guide feature learning, focusing more on the features of target lncRNA (disease) nodes. The target nodes were increasingly masked as training progressed, which helps develop a more robust prediction model. Second, we developed a graph convolutional network with dynamic residuals (GCNDR) to learn and integrate the heterogeneous topology and features of all lncRNA, disease, and miRNA nodes. GCNDR employs an interlayer residual strategy and a residual evolution strategy to mitigate oversmoothing caused by multilayer graph convolution. The interlayer residual strategy estimates the importance of node features learned in the previous GCN encoding layer for nodes in the current encoding layer. Additionally, since there are dependencies in the importance of features of individual lncRNA (disease, miRNA) nodes across multiple encoding layers, a gated recurrent unit-based strategy is proposed to encode these dependencies. Finally, we designed a perspective-level attention mechanism to obtain more informative features of lncRNA and disease node pairs from the perspectives of mask-enhanced and dynamic-enhanced node features. Cross-validation experimental results demonstrated that MDLD outperformed 10 other state-of-the-art prediction methods. Ablation experiments and case studies on candidate lncRNAs for three diseases further proved the technical contributions of MDLD and its capability to discover disease-related lncRNAs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
6秒前
科研通AI5应助发嗲的戎采纳,获得10
8秒前
9秒前
12秒前
聂先生发布了新的文献求助10
12秒前
yzl完成签到 ,获得积分10
14秒前
16秒前
天雨流芳发布了新的文献求助10
16秒前
17秒前
18秒前
Orange应助无情胡萝卜采纳,获得50
20秒前
科研通AI5应助坚强的寒梦采纳,获得50
21秒前
zzmy发布了新的文献求助10
21秒前
简单发布了新的文献求助10
21秒前
he发布了新的文献求助10
22秒前
小秋完成签到,获得积分20
23秒前
JamesPei应助xiaxianong采纳,获得10
23秒前
24秒前
24秒前
研友_VZG7GZ应助天雨流芳采纳,获得10
24秒前
隐形曼青应助carrieschen采纳,获得10
26秒前
姜茶完成签到 ,获得积分10
27秒前
27秒前
SYLH应助神勇冷雁采纳,获得10
27秒前
小秋发布了新的文献求助10
29秒前
FashionBoy应助caisongliang采纳,获得10
30秒前
35秒前
wanci应助十七采纳,获得10
35秒前
35秒前
地表飞猪应助sxy采纳,获得30
36秒前
顾矜应助洋芋采纳,获得10
36秒前
38秒前
活力的念之完成签到,获得积分10
40秒前
花千河发布了新的文献求助10
41秒前
寻舟者发布了新的文献求助10
42秒前
传奇3应助小学生库里采纳,获得10
43秒前
垃圾桶完成签到 ,获得积分10
44秒前
科研通AI2S应助hahahaha采纳,获得10
44秒前
CipherSage应助Str0n采纳,获得10
45秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
Images that translate 500
引进保护装置的分析评价八七年国外进口线路等保护运行情况介绍 500
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3840592
求助须知:如何正确求助?哪些是违规求助? 3382626
关于积分的说明 10525423
捐赠科研通 3102331
什么是DOI,文献DOI怎么找? 1708767
邀请新用户注册赠送积分活动 822670
科研通“疑难数据库(出版商)”最低求助积分说明 773472