Atmospheric Pressure Ammonia Synthesis on AuRu Catalysts Enabled by Plasmon-Controlled Hydrogenation and Nitrogen-species Desorption

催化作用 解吸 大气压力 氮气 氨生产 等离子体子 环境化学 化学 光化学 无机化学 材料科学 有机化学 光电子学 吸附 气象学 物理
作者
Lin Yuan,Briley Bourgeois,Elijah Begin,Yirui Zhang,Alan Dai,Zhihua Cheng,Amy McKeown-Green,Zhichen Xue,Yi Cui,Kun Xu,Yu Wang,Matthew R. Jones,Yi Cui,Arun Majumdar,Junwei Lucas Bao,Jennifer A. Dionne
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2410.01300
摘要

Ammonia is a key component of fertilizer and a potential clean fuel and hydrogen carrier. The Haber-Bosch process for ammonia synthesis consumes more than half of industrial hydrogen and contributes up to ~3% of global greenhouse gas emissions. Light-driven reactions via surface plasmon resonances offer a less energy-intensive pathway for ammonia production by altering reaction intermediates. Here, we report gold-ruthenium plasmonic bimetallic alloys for ammonia synthesis at room temperature and pressure, driven by visible light. We use colloidal synthesis to create AuRu$_x$ alloys (x=0.1, 0.2, 0.3) and disperse these nanoparticles on MgO supports for gas-phase ammonia synthesis. We observe a ~60 $μ$mol/g/h reactivity and ~0.12% external quantum efficiency on a AuRu$_0$$_.$$_2$ sample under 100 mW/cm$^2$ visible light. In-situ diffuse reflective infrared Fourier transform spectroscopic measurements show that hydrogenation of nitrogen adsorbates is accelerated under light compared to thermocatalysis. Combining wavelength-dependent reactivity and spectroscopic findings with semi-classical electromagnetic modeling, we show plasmonic bimetallic alloys expedite ammonia synthesis by aiding hydrogenation of adsorbed nitrogen species via plasmon-mediated hot electrons. Quantum mechanical calculations reveal hydrogen-assisted N$_2$ splitting in the excited state is key to activating the reaction under ambient conditions. Therefore, light or H$_2$ alone cannot dissociate N$_2$ -- the key bottleneck to breaking N$_2$'s triple bond. Our findings are consistent with recent hypotheses on how nitrogenase enzymes catalyze ammonia production at mild conditions and provide insights for sustainable photochemical transformations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
jumbaumba完成签到,获得积分10
1秒前
香蕉觅云应助学术小白w采纳,获得10
1秒前
武巧运完成签到 ,获得积分10
1秒前
量子星尘发布了新的文献求助10
1秒前
cc发布了新的文献求助10
2秒前
彭于晏应助科研通管家采纳,获得10
2秒前
Orange应助科研通管家采纳,获得10
2秒前
彭于晏应助科研通管家采纳,获得10
2秒前
SciGPT应助科研通管家采纳,获得10
2秒前
herococa应助科研通管家采纳,获得10
2秒前
浮游应助科研通管家采纳,获得10
2秒前
MiffyJia应助科研通管家采纳,获得10
2秒前
tuanheqi应助科研通管家采纳,获得150
2秒前
2秒前
Owen应助科研通管家采纳,获得10
3秒前
3秒前
斯文败类应助科研通管家采纳,获得10
3秒前
小二郎应助科研通管家采纳,获得10
3秒前
刘帅完成签到,获得积分10
3秒前
科研通AI6应助科研通管家采纳,获得10
3秒前
领导范儿应助Sir.夏季风采纳,获得10
3秒前
子车茗应助科研通管家采纳,获得30
4秒前
深情安青应助科研通管家采纳,获得20
4秒前
浮游应助科研通管家采纳,获得10
4秒前
量子星尘发布了新的文献求助10
4秒前
在水一方应助yizhi采纳,获得10
4秒前
研友_VZG7GZ应助科研通管家采纳,获得10
4秒前
浮游应助科研通管家采纳,获得10
4秒前
4秒前
子车茗应助科研通管家采纳,获得30
4秒前
4秒前
wanci应助科研通管家采纳,获得10
5秒前
herococa应助科研通管家采纳,获得10
5秒前
5秒前
大个应助科研通管家采纳,获得10
5秒前
科研通AI6应助科研通管家采纳,获得10
5秒前
子车茗应助科研通管家采纳,获得30
5秒前
星星之火完成签到,获得积分10
5秒前
小小完成签到 ,获得积分10
7秒前
ww完成签到,获得积分10
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5662838
求助须知:如何正确求助?哪些是违规求助? 4845174
关于积分的说明 15101436
捐赠科研通 4821204
什么是DOI,文献DOI怎么找? 2580624
邀请新用户注册赠送积分活动 1534739
关于科研通互助平台的介绍 1493202