亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Predicting High‐Flow Nasal Cannula Oxygen Therapy Failure in Patients With Acute Hypoxaemic Respiratory Failure Using Machine Learning: Model Development and External Validation

鼻插管 医学 接收机工作特性 格拉斯哥昏迷指数 机械通风 插管 机器学习 急诊医学 重症监护室 观察研究 呼吸衰竭 重症监护医学 套管 麻醉 外科 计算机科学 内科学
作者
Hongtao Cheng,Zichen Wang,Mei Feng,Yonglan Tang,Xiaoyu Zheng,Xiaoshen Zhang,Jun Lyu
出处
期刊:Journal of Clinical Nursing [Wiley]
标识
DOI:10.1111/jocn.17518
摘要

ABSTRACT Aims and Objectives To develop and validate a prediction model for high‐flow nasal cannula (HFNC) failure in patients with acute hypoxaemic respiratory failure (AHRF). Background AHRF accounts for a major proportion of intensive care unit (ICU) admissions and is associated with high mortality. HFNC is a non‐invasive respiratory support technique that can improve patient oxygenation. However, HFNC failure, defined as the need for escalation to invasive mechanical ventilation, can lead to delayed intubation, prolonged mechanical ventilation and increased risk of mortality. Timely and accurate prediction of HFNC failure has important clinical implications. Machine learning (ML) can improve clinical prediction. Design Multicentre observational study. Methods This study analysed 581 patients from an academic medical centre in Boston and 180 patients from Guangzhou, China treated with HFNC for AHRF. The Boston dataset was randomly divided into a training set (90%, n = 522) and an internal validation set (10%, n = 59), and the model was externally validated using the Guangzhou dataset ( n = 180). A random forest (RF)‐based feature selection method was used to identify predictive factors. Nine machine learning algorithms were selected to build the predictive model. The area under the receiver operating characteristic curve (AUC) and performance evaluation parameters were used to evaluate the models. Results The final model included 38 features selected using the RF method, with additional input from clinical specialists. Models based on ensemble learning outperformed other models (internal validation AUC: 0.83; external validation AUC: 0.75). Important predictors of HFNC failure include Glasgow Coma Scale scores and Sequential Organ Failure Assessment scores, albumin levels measured during HFNC treatment, ROX index at ICU admission and sepsis. Conclusions This study developed an interpretable ML model that accurately predicts the risk of HFNC failure in patients with AHRF. Relevance to Clinical Practice Clinicians and nurses can use ML models for early risk assessment and decision support in AHRF patients receiving HFNC. Reporting Method TRIPOD checklist for prediction model studies was followed in this study. Patient or Public Contribution Patients were involved in the sample of the study.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
11秒前
25秒前
宇钰完成签到,获得积分10
28秒前
hanser发布了新的文献求助10
31秒前
33秒前
33秒前
38秒前
学术通zzz发布了新的文献求助10
40秒前
bkagyin应助科研通管家采纳,获得10
42秒前
传奇3应助科研通管家采纳,获得10
42秒前
充电宝应助冷静的问丝采纳,获得10
49秒前
52秒前
53秒前
001发布了新的文献求助10
1分钟前
1分钟前
1分钟前
Zeeki完成签到 ,获得积分10
1分钟前
MishimaErika发布了新的文献求助10
1分钟前
1分钟前
万能图书馆应助hanser采纳,获得10
1分钟前
许三问完成签到 ,获得积分0
1分钟前
rpe发布了新的文献求助20
1分钟前
MishimaErika完成签到,获得积分10
2分钟前
科研通AI5应助苏苏苏采纳,获得10
2分钟前
2分钟前
学术通zzz发布了新的文献求助10
2分钟前
2分钟前
苏苏苏发布了新的文献求助10
2分钟前
2分钟前
熹熹发布了新的文献求助10
2分钟前
清脆书琴发布了新的文献求助10
2分钟前
小马甲应助科研通管家采纳,获得10
2分钟前
思源应助科研通管家采纳,获得10
2分钟前
2分钟前
2分钟前
赘婿应助三五一十五采纳,获得10
2分钟前
伏线完成签到 ,获得积分10
2分钟前
Serena510完成签到 ,获得积分10
3分钟前
明白那就发布了新的文献求助30
3分钟前
Mistletoe完成签到 ,获得积分10
3分钟前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Izeltabart tapatansine - AdisInsight 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3815733
求助须知:如何正确求助?哪些是违规求助? 3359299
关于积分的说明 10402104
捐赠科研通 3077165
什么是DOI,文献DOI怎么找? 1690073
邀请新用户注册赠送积分活动 813659
科研通“疑难数据库(出版商)”最低求助积分说明 767703