Machine learning for pest detection and infestation prediction: A comprehensive review

可解释性 计算机科学 有害生物分析 人工智能 卷积神经网络 病虫害综合治理 机器学习 数据科学 生态学 生物 植物
作者
Mamta Mittal,Vedika Gupta,Mohammad Aamash,Tejas Upadhyay
出处
期刊:Wiley Interdisciplinary Reviews-Data Mining and Knowledge Discovery [Wiley]
卷期号:14 (5) 被引量:6
标识
DOI:10.1002/widm.1551
摘要

Abstract Pests pose a major danger to a variety of industries, including agriculture, public health, and ecosystems. Fast and precise pest detection, as well as the ability to predict infestations, are required for effective pest management tactics. This paper provides a comprehensive literature review on this subject to provide an overview of the state of research on pest detection and infestation prediction. The paper investigates and presents background information on the necessity of pest control as well as the difficulty in recognizing pests and forecasting. Several strategies, including approaches to data collection, modeling, and assessment of models, are reviewed in the research described. The authors examine various pest detection methods involving the utilization of convolutional neural networks and several object detection architectures categorized broadly into one‐stage and two‐stage object detection algorithms. Methods for predicting pest infestations that involve regression, classification, and time series forecasting are also thoroughly investigated. The challenges of recognizing pests and predicting infestations are underlined, as are issues with data quality, feature selection, and model interpretability. The report also indicates the limitations to pest detection and infestation prediction as well as intriguing topics for further research on the same. The findings of the literature research demonstrate how Artificial Intelligence, Computer Vision, and the Internet of Things have been applied for Pest Detection and Infestation Prediction. The research serves as a base for surveying and summarizing the approaches utilized for the task of pest detection (an object detection problem) and pest infestation prediction (a forecasting problem) and its findings and recommendations serve as a platform for future study and the development of effective pest management solutions. This article is categorized under: Application Areas > Health Care Technologies > Machine Learning Technologies > Prediction
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Ya完成签到 ,获得积分10
刚刚
辛勤的奇异果完成签到,获得积分10
1秒前
goblue完成签到,获得积分10
1秒前
爱吃肥牛完成签到,获得积分10
1秒前
2秒前
有魅力强炫完成签到,获得积分10
2秒前
科研小哥完成签到,获得积分10
2秒前
口味虾发布了新的文献求助10
2秒前
小城故事和冰雨完成签到,获得积分10
2秒前
Momo337应助Lny采纳,获得50
3秒前
科研蠢狗完成签到,获得积分10
3秒前
墨瞳完成签到,获得积分10
3秒前
执着千筹完成签到,获得积分10
3秒前
量子星尘发布了新的文献求助10
4秒前
一个丙完成签到,获得积分10
4秒前
哈喽完成签到,获得积分10
4秒前
诺796发布了新的文献求助10
5秒前
无限的千凝完成签到 ,获得积分10
5秒前
qzt完成签到,获得积分10
6秒前
小李完成签到,获得积分10
6秒前
无限的小懒虫完成签到,获得积分10
7秒前
蓝莓完成签到,获得积分10
7秒前
7秒前
7秒前
淞淞于我完成签到 ,获得积分10
7秒前
大可完成签到,获得积分10
7秒前
周运完成签到 ,获得积分10
8秒前
苏汝帆完成签到 ,获得积分10
8秒前
随风走完成签到,获得积分10
9秒前
杨旭完成签到,获得积分10
9秒前
是真的完成签到 ,获得积分10
9秒前
科研小白完成签到,获得积分10
9秒前
巧克力张张包完成签到,获得积分10
9秒前
浮游应助FFF采纳,获得10
10秒前
端庄的石头完成签到 ,获得积分10
10秒前
张真狗完成签到,获得积分10
11秒前
诺796完成签到,获得积分10
11秒前
12秒前
xionggege完成签到,获得积分10
12秒前
舒适的追命完成签到,获得积分10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
International Encyclopedia of Business Management 1000
Encyclopedia of Materials: Plastics and Polymers 1000
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4935909
求助须知:如何正确求助?哪些是违规求助? 4203582
关于积分的说明 13060246
捐赠科研通 3980919
什么是DOI,文献DOI怎么找? 2179848
邀请新用户注册赠送积分活动 1195794
关于科研通互助平台的介绍 1107678