已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Machine learning for pest detection and infestation prediction: A comprehensive review

可解释性 计算机科学 有害生物分析 人工智能 卷积神经网络 病虫害综合治理 机器学习 数据科学 生态学 生物 植物
作者
Mamta Mittal,Vedika Gupta,Mohammad Aamash,Tejas Upadhyay
出处
期刊:Wiley Interdisciplinary Reviews-Data Mining and Knowledge Discovery [Wiley]
卷期号:14 (5) 被引量:6
标识
DOI:10.1002/widm.1551
摘要

Abstract Pests pose a major danger to a variety of industries, including agriculture, public health, and ecosystems. Fast and precise pest detection, as well as the ability to predict infestations, are required for effective pest management tactics. This paper provides a comprehensive literature review on this subject to provide an overview of the state of research on pest detection and infestation prediction. The paper investigates and presents background information on the necessity of pest control as well as the difficulty in recognizing pests and forecasting. Several strategies, including approaches to data collection, modeling, and assessment of models, are reviewed in the research described. The authors examine various pest detection methods involving the utilization of convolutional neural networks and several object detection architectures categorized broadly into one‐stage and two‐stage object detection algorithms. Methods for predicting pest infestations that involve regression, classification, and time series forecasting are also thoroughly investigated. The challenges of recognizing pests and predicting infestations are underlined, as are issues with data quality, feature selection, and model interpretability. The report also indicates the limitations to pest detection and infestation prediction as well as intriguing topics for further research on the same. The findings of the literature research demonstrate how Artificial Intelligence, Computer Vision, and the Internet of Things have been applied for Pest Detection and Infestation Prediction. The research serves as a base for surveying and summarizing the approaches utilized for the task of pest detection (an object detection problem) and pest infestation prediction (a forecasting problem) and its findings and recommendations serve as a platform for future study and the development of effective pest management solutions. This article is categorized under: Application Areas > Health Care Technologies > Machine Learning Technologies > Prediction
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
2秒前
无奈晓瑶发布了新的文献求助10
3秒前
前扣带回完成签到,获得积分10
4秒前
单纯醉易发布了新的文献求助10
5秒前
6秒前
CodeCraft应助Jason190采纳,获得10
7秒前
十三州府完成签到,获得积分10
9秒前
11秒前
11秒前
外向春天完成签到 ,获得积分10
14秒前
FashionBoy应助无奈晓瑶采纳,获得10
15秒前
乐乐应助无奈晓瑶采纳,获得10
15秒前
jimmy应助大锤采纳,获得10
16秒前
16秒前
17秒前
灵巧一笑完成签到 ,获得积分10
18秒前
19秒前
科研通AI6应助樱桃小丸子采纳,获得10
20秒前
21秒前
木木完成签到,获得积分10
24秒前
24秒前
qqqqqq完成签到,获得积分10
25秒前
Lucas应助段yt采纳,获得10
26秒前
罗罗发布了新的文献求助10
27秒前
37秒前
罗罗完成签到,获得积分10
38秒前
乐乐应助Ztx采纳,获得10
40秒前
孙孙应助greenxvatit采纳,获得10
40秒前
hy发布了新的文献求助10
41秒前
45秒前
45秒前
孙孙应助单纯醉易采纳,获得10
46秒前
48秒前
HMG1COA完成签到 ,获得积分10
49秒前
Jason190发布了新的文献求助10
49秒前
嘉宾发布了新的文献求助10
51秒前
隐形曼青应助肌肉干细胞采纳,获得10
52秒前
52秒前
孙孙应助北水穼采纳,获得10
55秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Pediatric Injectable Drugs 500
Instant Bonding Epoxy Technology 500
Methodology for the Human Sciences 500
ASHP Injectable Drug Information 2025 Edition 400
DEALKOXYLATION OF β-CYANOPROPIONALDEYHDE DIMETHYL ACETAL 400
Assessment of adverse effects of Alzheimer's disease medications: Analysis of notifications to Regional Pharmacovigilance Centers in Northwest France 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4375129
求助须知:如何正确求助?哪些是违规求助? 3871389
关于积分的说明 12066699
捐赠科研通 3514285
什么是DOI,文献DOI怎么找? 1928478
邀请新用户注册赠送积分活动 970159
科研通“疑难数据库(出版商)”最低求助积分说明 868900