A Deep Neural Network Approach towards Performance Prediction of Bituminous Mixtures Produced Using Secondary Raw Materials

沥青 人工神经网络 极限抗拉强度 计算机科学 环境科学 工艺工程 材料科学 机器学习 工程类 复合材料
作者
Fabio Rondinella,Cristina Oreto,Francesco Abbondati,Nicola Baldo
出处
期刊:Coatings [MDPI AG]
卷期号:14 (8): 922-922 被引量:4
标识
DOI:10.3390/coatings14080922
摘要

With the progressive reduction in virgin material availability and the growing global concern for sustainability, civil engineering researchers worldwide are shifting their attention toward exploring alternative and mechanically sound technological solutions. The feasibility of preparing both cold and hot asphalt mixtures (AMs) for road pavement binder layers with construction and demolition wastes (C&DWs) and reclaimed asphalt pavement (RAP) partially replacing virgin materials like limestone aggregates and filler has already been proven. The technical suitability and compliance with technical specifications for road paving materials involved the evaluation of mechanical and volumetric aspects by means of indirect tensile strength tests and saturated surface dry voids, respectively. Thus, the main goal of the present study is to train, validate, and test selected machine learning algorithms based on data obtained from the previous experimental campaign with the aim of predicting the volumetric properties and the mechanical performance of the investigated mixtures. A comparison between the predictions made by ridge and lasso regression techniques and both shallow (SNN) and deep neural network (DNN) models showed that the latter achieved better predictive capabilities, highlighted by fully satisfactory performance metrics. DNN performance can be summarized by R2 values equal to 0.8990 in terms of saturated surface dry void predictions, as well as 0.9954 in terms of indirect tensile strength predictions. Predicted observations can be thus implemented within the traditional mix design software. This would reduce the need to carry out additional expensive and time-consuming experimental campaigns.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
FashionBoy应助Genius采纳,获得10
刚刚
情怀应助和谐的笑柳采纳,获得10
1秒前
多情捕发布了新的文献求助10
2秒前
李健的小迷弟应助叶凯利采纳,获得10
2秒前
jieni发布了新的文献求助10
3秒前
4秒前
4秒前
大个应助饭特稀采纳,获得10
6秒前
wanci应助adore采纳,获得10
7秒前
9秒前
Empty完成签到,获得积分10
9秒前
花卷发布了新的文献求助10
10秒前
10秒前
科研通AI6应助xlz采纳,获得10
11秒前
12秒前
11111完成签到,获得积分10
12秒前
蓝莓芝士完成签到 ,获得积分10
13秒前
威武问枫完成签到,获得积分10
13秒前
wyfyq完成签到,获得积分10
14秒前
xiaotaiyang完成签到,获得积分10
14秒前
李爱国应助桃子采纳,获得10
14秒前
15秒前
研友_ZGDQK8完成签到,获得积分10
15秒前
香蕉觅云应助花卷采纳,获得10
15秒前
xiaotaiyang发布了新的文献求助10
16秒前
量子星尘发布了新的文献求助10
16秒前
您多笑笑完成签到,获得积分20
17秒前
17秒前
18秒前
adore发布了新的文献求助10
20秒前
充电宝应助西呱呱采纳,获得80
20秒前
21秒前
3977发布了新的文献求助10
21秒前
22秒前
rainhowk完成签到,获得积分10
22秒前
ei发布了新的文献求助10
24秒前
我爱学习发布了新的文献求助10
25秒前
25秒前
顾矜应助sschen采纳,获得10
27秒前
ei完成签到,获得积分10
28秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
Pediatric Nutrition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5553181
求助须知:如何正确求助?哪些是违规求助? 4637684
关于积分的说明 14650746
捐赠科研通 4579599
什么是DOI,文献DOI怎么找? 2511711
邀请新用户注册赠送积分活动 1486654
关于科研通互助平台的介绍 1457621