氢气储存
储能
物理吸附
材料科学
纳米技术
可扩展性
工艺工程
MXenes公司
计算机科学
吸附
化学
合金
工程类
热力学
复合材料
功率(物理)
有机化学
物理
数据库
作者
Chaochao Dun,Xinyi Wang,Linfeng Chen,Sichi Li,Hanna Breunig,Jeffrey J. Urban
出处
期刊:Nano Research
[Springer Nature]
日期:2024-07-31
卷期号:17 (10): 8729-8753
被引量:14
标识
DOI:10.1007/s12274-024-6876-y
摘要
Nanomaterials have revolutionized the battery industry by enhancing energy storage capacities and charging speeds, and their application in hydrogen (H<sub>2</sub>) storage likewise holds strong potential, though with distinct challenges and mechanisms. H<sub>2</sub> is a crucial future zero-carbon energy vector given its high gravimetric energy density, which far exceeds that of liquid hydrocarbons. However, its low volumetric energy density in gaseous form currently requires storage under high pressure or at low temperature. This review critically examines the current and prospective landscapes of solid-state H<sub>2</sub> storage technologies, with a focus on pragmatic integration of advanced materials such as metal-organic frameworks (MOFs), magnesium-based hybrids, and novel sorbents into future energy networks. These materials, enhanced by nanotechnology, could significantly improve the efficiency and capacity of H<sub>2</sub> storage systems by optimizing H<sub>2</sub> adsorption at the nanoscale and improving the kinetics of H<sub>2</sub> uptake and release. We discuss various H<sub>2</sub> storage mechanisms—physisorption, chemisorption, and the Kubas interaction—analyzing their impact on the energy efficiency and scalability of storage solutions. The review also addresses the potential of “smart MOFs”, single-atom catalyst-doped metal hydrides, MXenes and entropy-driven alloys to enhance the performance and broaden the application range of H<sub>2</sub> storage systems, stressing the need for innovative materials and system integration to satisfy future energy demands. High-throughput screening, combined with machine learning algorithms, is noted as a promising approach to identify patterns and predict the behavior of novel materials under various conditions, significantly reducing the time and cost associated with experimental trials. In closing, we discuss the increasing involvement of various companies in solid-state H<sub>2</sub> storage, particularly in prototype vehicles, from a techno-economic perspective. In conclusion, this forward-looking perspective underscores the necessity for ongoing material innovation and system optimization to meet the stringent energy demands and ambitious sustainability targets increasingly in demand.
科研通智能强力驱动
Strongly Powered by AbleSci AI