A Computer Vision Algorithm to Predict Superior Mesenteric Artery Margin Status for Patients with Pancreatic Ductal Adenocarcinoma

医学 形状记忆合金* 肠系膜上动脉 放射科 胰腺导管腺癌 分割 边距(机器学习) 算法 人工智能 胰腺癌 内科学 机器学习 癌症 计算机科学
作者
Jane Wang,Amir Ashraf‐Ganjouei,Fernanda Romero‐Hernández,Laleh Foroutani,Dorukhan Bahceci,Aletta Deranteriassian,Megan Casey,Po-Yi Li,Sina Houshmand,Spencer C. Behr,Neema Jamshidi,Sharmila Majumdar,Timothy R. Donahue,G. Kim,Zhen Jane Wang,Lucas W. Thornblade,Mohamed A. Adam,Adnan Alseidi
出处
期刊:Annals of Surgery [Lippincott Williams & Wilkins]
标识
DOI:10.1097/sla.0000000000006506
摘要

Objective: To evaluate the feasibility of developing a computer vision algorithm that uses preoperative computed tomography (CT) scans to predict superior mesenteric artery (SMA) margin status in patients undergoing Whipple for pancreatic ductal adenocarcinoma (PDAC), and to compare algorithm performance to that of expert abdominal radiologists and surgical oncologists. Summary Background Data: Complete surgical resection is the only chance to achieve a cure for PDAC; however, current modalities to predict vascular invasion have limited accuracy. Methods: Adult patients with PDAC who underwent Whipple and had preoperative contrast-enhanced CT scans were included (2010-2022). The SMA was manually annotated on the CT scans, and we trained a U-Net algorithm for SMA segmentation and a ResNet50 algorithm for predicting SMA margin status. Radiologists and surgeons reviewed the scans in a blinded fashion. SMA margin status per pathology reports was the reference. Results: Two hundred patients were included. Forty patients (20%) had a positive SMA margin. For the segmentation task, the U-Net model achieved a Dice Similarity Coefficient of 0.90. For the classification task, all readers demonstrated limited sensitivity, although the algorithm had the highest sensitivity at 0.43 (versus 0.23 and 0.36 for the radiologists and surgeons, respectively). Specificity was universally excellent, with the radiologist and algorithm demonstrating the highest specificity at 0.94. Finally, the accuracy of the algorithm was 0.85 versus 0.80 and 0.76 for the radiologists and surgeons, respectively. Conclusions: We demonstrated the feasibility of developing a computer vision algorithm to predict SMA margin status using preoperative CT scans, highlighting its potential to augment the prediction of vascular involvement.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
今后应助腼腆的如花采纳,获得10
刚刚
蜗牛二世完成签到 ,获得积分0
刚刚
All发布了新的文献求助10
1秒前
夜航鸟完成签到,获得积分10
1秒前
xiao发布了新的文献求助10
1秒前
ChAoS7777完成签到,获得积分10
2秒前
一二三完成签到,获得积分10
2秒前
小小完成签到,获得积分10
2秒前
大大彬发布了新的文献求助10
2秒前
云隐完成签到,获得积分10
2秒前
3秒前
miemiemie94发布了新的文献求助10
3秒前
赘婿应助电闪采纳,获得10
3秒前
4秒前
扎根发布了新的文献求助10
5秒前
5秒前
5秒前
Silence完成签到,获得积分10
6秒前
xiaozhang完成签到 ,获得积分10
6秒前
科目三应助荼蘼如雪采纳,获得10
7秒前
YH完成签到,获得积分10
7秒前
熊涛发布了新的文献求助10
8秒前
9秒前
淡定初珍完成签到,获得积分10
9秒前
T1kz4发布了新的文献求助10
9秒前
脑洞疼应助金jin采纳,获得10
10秒前
why完成签到,获得积分10
10秒前
chen发布了新的文献求助10
10秒前
咕咕完成签到,获得积分10
10秒前
10秒前
NexusExplorer应助All采纳,获得10
11秒前
11秒前
snowball发布了新的文献求助10
11秒前
xiao完成签到,获得积分10
11秒前
12秒前
pongpog123完成签到,获得积分10
12秒前
12秒前
超级的雁山应助聪明安露采纳,获得10
13秒前
小王啵啵完成签到 ,获得积分10
13秒前
13秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Pharmacological profile of sulodexide 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3804725
求助须知:如何正确求助?哪些是违规求助? 3349592
关于积分的说明 10345510
捐赠科研通 3065684
什么是DOI,文献DOI怎么找? 1683244
邀请新用户注册赠送积分活动 808762
科研通“疑难数据库(出版商)”最低求助积分说明 764734