Small-sample health indicator construction of rolling bearings with wavelet scattering network: An empirical study from frequency perspective

透视图(图形) 小波 样品(材料) 散射 声学 结构工程 计算机科学 工程类 人工智能 光学 物理 热力学
作者
Na Wang,Wentao Mao,Yanna Zhang,Panpan Zeng,Zhidan Zhong
标识
DOI:10.1177/1748006x241272827
摘要

As a critical issue of diagnostics and health management (PHM), health indicator (HI) construction aims to describe the degradation process of bearings and can provide essential support of domain knowledge for early fault detection and remaining useful life prediction. In recent years, various deep neural networks, with end-to-end modeling capability, have been successfully applied to the HI construction for rolling bearings. In small-sample environment, however, the degradation features would not be extracted well by deep learning techniques, which may raise insufficient tendency and monotonicity characteristics in the obtained HI sequence. To address this concern, this paper proposes a HI construction method based on wavelet scattering network (WSN) and makes an empirical evaluation from frequency perspective. First, degradation features in different frequency bands are extracted from vibration signals by using WSN to expand the feature space with different scales and orientations. Second, the frequency band with the optimal scale and orientation parameters is selected by calculating the dynamic time wrapping (DTW) distance between the feature sequences of each frequency band and the root mean square (RMS) sequence. With the feature subset from the determined frequency band, the HI sequence can be built by means of principal component analysis (PCA). Experimental results on the IEEE PHM Challenge 2012 bearing dataset show that the proposed method can work well with only a small amount of bearing whole-life data in obtaining the HI sequences with high monotonicity and correlation characteristics. More interestingly, the critical frequency band whose information supports decisively the HI construction can be clarified, raising interpretability in a frequency sense and enhancing the credibility of the obtained HI sequence as well.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
WeiPaiHWuFXZ完成签到 ,获得积分10
2秒前
洋溢发布了新的文献求助10
5秒前
CodeCraft应助LIIIIIII采纳,获得10
9秒前
Buduan完成签到,获得积分10
10秒前
君君发布了新的文献求助10
10秒前
活泼啤酒完成签到 ,获得积分10
11秒前
www完成签到 ,获得积分10
11秒前
13秒前
魔法披风完成签到,获得积分10
15秒前
haibing发布了新的文献求助10
18秒前
19秒前
jiao完成签到,获得积分10
20秒前
上官若男应助lxr2采纳,获得10
23秒前
乐乐应助君君采纳,获得30
23秒前
24秒前
义气的巨人完成签到,获得积分10
26秒前
77完成签到 ,获得积分10
27秒前
29秒前
lili完成签到 ,获得积分10
30秒前
君君完成签到,获得积分10
30秒前
cyy1226完成签到,获得积分10
32秒前
天天快乐应助cccr02采纳,获得10
33秒前
34秒前
皮皮虾完成签到,获得积分10
34秒前
35秒前
Brian完成签到,获得积分10
36秒前
38秒前
海燕完成签到 ,获得积分20
39秒前
sss发布了新的文献求助10
39秒前
只有辣椒没有油完成签到 ,获得积分10
40秒前
娇气的春天完成签到 ,获得积分10
42秒前
爱听歌的寄云完成签到 ,获得积分10
43秒前
蜜HHH完成签到 ,获得积分10
43秒前
小刘发布了新的文献求助20
45秒前
霍师傅发布了新的文献求助10
45秒前
45秒前
成就绮琴完成签到 ,获得积分10
46秒前
haibing完成签到,获得积分10
47秒前
炙热忆枫发布了新的文献求助10
48秒前
50秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3779404
求助须知:如何正确求助?哪些是违规求助? 3324954
关于积分的说明 10220585
捐赠科研通 3040099
什么是DOI,文献DOI怎么找? 1668560
邀请新用户注册赠送积分活动 798721
科研通“疑难数据库(出版商)”最低求助积分说明 758522