已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Small-sample health indicator construction of rolling bearings with wavelet scattering network: An empirical study from frequency perspective

透视图(图形) 小波 样品(材料) 散射 声学 结构工程 计算机科学 工程类 人工智能 光学 物理 热力学
作者
Na Wang,Wentao Mao,Yanna Zhang,Panpan Zeng,Zhidan Zhong
标识
DOI:10.1177/1748006x241272827
摘要

As a critical issue of diagnostics and health management (PHM), health indicator (HI) construction aims to describe the degradation process of bearings and can provide essential support of domain knowledge for early fault detection and remaining useful life prediction. In recent years, various deep neural networks, with end-to-end modeling capability, have been successfully applied to the HI construction for rolling bearings. In small-sample environment, however, the degradation features would not be extracted well by deep learning techniques, which may raise insufficient tendency and monotonicity characteristics in the obtained HI sequence. To address this concern, this paper proposes a HI construction method based on wavelet scattering network (WSN) and makes an empirical evaluation from frequency perspective. First, degradation features in different frequency bands are extracted from vibration signals by using WSN to expand the feature space with different scales and orientations. Second, the frequency band with the optimal scale and orientation parameters is selected by calculating the dynamic time wrapping (DTW) distance between the feature sequences of each frequency band and the root mean square (RMS) sequence. With the feature subset from the determined frequency band, the HI sequence can be built by means of principal component analysis (PCA). Experimental results on the IEEE PHM Challenge 2012 bearing dataset show that the proposed method can work well with only a small amount of bearing whole-life data in obtaining the HI sequences with high monotonicity and correlation characteristics. More interestingly, the critical frequency band whose information supports decisively the HI construction can be clarified, raising interpretability in a frequency sense and enhancing the credibility of the obtained HI sequence as well.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
陶醉紫菜发布了新的文献求助10
2秒前
唐唐的猫咪完成签到 ,获得积分10
8秒前
CATH完成签到 ,获得积分10
10秒前
ZTLlele完成签到 ,获得积分10
10秒前
WillGUO发布了新的文献求助10
10秒前
香蕉面包完成签到 ,获得积分10
10秒前
11秒前
13秒前
科目三应助zy采纳,获得10
13秒前
走啊走应助Aimee采纳,获得30
14秒前
小宋同学不能怂完成签到 ,获得积分10
14秒前
yuebaoji完成签到,获得积分10
15秒前
Ressia0727发布了新的文献求助10
17秒前
无语的巨人完成签到 ,获得积分10
19秒前
亦hcy完成签到,获得积分10
21秒前
称心的栗子完成签到 ,获得积分10
22秒前
晁子枫完成签到 ,获得积分10
22秒前
Sunziy完成签到,获得积分10
24秒前
27秒前
小张完成签到 ,获得积分10
28秒前
30秒前
l0000完成签到,获得积分10
33秒前
34秒前
川川发布了新的文献求助10
34秒前
zy发布了新的文献求助10
35秒前
yy发布了新的文献求助10
38秒前
SciGPT应助科研民工李采纳,获得10
41秒前
dongdong发布了新的文献求助10
41秒前
KT酱完成签到 ,获得积分10
42秒前
zy完成签到,获得积分10
43秒前
鹏笑完成签到,获得积分10
44秒前
852应助川川采纳,获得10
45秒前
ychen完成签到,获得积分10
45秒前
Ccccn完成签到,获得积分10
46秒前
Owen应助ychen采纳,获得10
49秒前
ding应助明亮的河马采纳,获得10
49秒前
50秒前
YuGe完成签到,获得积分10
55秒前
56秒前
陶醉紫菜发布了新的文献求助10
56秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Bandwidth Choice for Bias Estimators in Dynamic Nonlinear Panel Models 2000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Vertebrate Palaeontology, 5th Edition 530
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5356235
求助须知:如何正确求助?哪些是违规求助? 4488073
关于积分的说明 13971611
捐赠科研通 4388906
什么是DOI,文献DOI怎么找? 2411290
邀请新用户注册赠送积分活动 1403833
关于科研通互助平台的介绍 1377655