超级电容器
对偶(语法数字)
分解水
材料科学
纳米技术
化学
电化学
电极
催化作用
有机化学
光催化
文学类
艺术
物理化学
作者
P. Sujita,S. Swetha,S. Vadivel
标识
DOI:10.1002/chem.202402645
摘要
This study explores the functionality of α-Bi2Mo3O12 (BMO) as an electrocatalyst for water splitting and its suitability for supercapacitor applications. BMO was synthesized by the solvothermal method and characterized in pre-calcination [BMO (BC)], post-calcination [BMO (AC)], and base-etched forms [BMO (BE)]. Structural analysis confirmed the formation of α-Bi2Mo3O12 with well-defined crystallographic planes. Electrochemical analysis revealed that BMO (AC) exhibited the lowest overpotential for hydrogen evolution reactions (HER) and BMO (BC) exhibited the lowest overpotential for oxygen evolution reactions (OER), indicating its superior electrocatalytic activity. The Tafel slope and electrochemical impedance spectroscopy results confirmed the superior kinetics and charge transfer properties of BMO material. Furthermore, BMO samples demonstrated excellent stability during prolonged chronoamperometry (CA) testing for 12 h. For supercapacitor performances, the BMO (BE) exhibits a superior specific capacitance value of 398 F/g at 2.0 A/g. Thus, the BMO material delivers prominent electrocatalytic activity as well as supercapacitor performance. Overall, this study demonstrates the potentiality of α-Bi2Mo3O12 in different forms as a dual-functional material for efficient energy storage and conversion.
科研通智能强力驱动
Strongly Powered by AbleSci AI