External Testing of a Deep Learning Model to Estimate Biologic Age Using Chest Radiographs

射线照相术 医学 放射科 医学物理学 人工智能 计算机科学
作者
Jong Hyuk Lee,Dongheon Lee,Michael T. Lu,Vineet K. Raghu,Jin Mo Goo,Yunhee Choi,Seung Ho Choi,Hyungjin Kim
出处
期刊:Radiology [Radiological Society of North America]
卷期号:6 (5) 被引量:1
标识
DOI:10.1148/ryai.230433
摘要

Purpose To assess the prognostic value of a deep learning-based chest radiographic age (hereafter, CXR-Age) model in a large external test cohort of Asian individuals. Materials and Methods This single-center, retrospective study included chest radiographs from consecutive, asymptomatic Asian individuals aged 50-80 years who underwent health checkups between January 2004 and June 2018. This study performed a dedicated external test of a previously developed CXR-Age model, which predicts an age adjusted based on the risk of all-cause mortality. Adjusted hazard ratios (HRs) of CXR-Age for all-cause, cardiovascular, lung cancer, and respiratory disease mortality were assessed using multivariable Cox or Fine-Gray models, and their added values were evaluated by likelihood ratio tests. Results A total of 36 924 individuals (mean chronological age, 58 years ± 7 [SD]; CXR-Age, 60 years ± 5; 22 352 male) were included. During a median follow-up of 11.0 years, 1250 individuals (3.4%) died, including 153 cardiovascular (0.4%), 166 lung cancer (0.4%), and 98 respiratory (0.3%) deaths. CXR-Age was a significant risk factor for all-cause (adjusted HR at chronological age of 50 years, 1.03; at 60 years, 1.05; at 70 years, 1.07), cardiovascular (adjusted HR, 1.11), lung cancer (adjusted HR for individuals who formerly smoked, 1.12; for those who currently smoke, 1.05), and respiratory disease (adjusted HR, 1.12) mortality (
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
3秒前
隐形曼青应助科研通管家采纳,获得10
3秒前
Orange应助科研通管家采纳,获得10
3秒前
ED应助科研通管家采纳,获得10
3秒前
华仔应助科研通管家采纳,获得10
3秒前
传奇3应助科研通管家采纳,获得10
3秒前
赘婿应助科研通管家采纳,获得10
3秒前
共享精神应助科研通管家采纳,获得10
3秒前
3秒前
香蕉觅云应助科研通管家采纳,获得10
3秒前
晨晨发布了新的文献求助20
6秒前
阿衡发布了新的文献求助10
7秒前
7秒前
大力思天发布了新的文献求助10
9秒前
小黄完成签到 ,获得积分10
9秒前
愉快的夏菡完成签到,获得积分10
10秒前
10秒前
赫枫完成签到,获得积分10
11秒前
晨陌兮客关注了科研通微信公众号
13秒前
13秒前
916应助Baigang_1018采纳,获得10
15秒前
17秒前
香蕉觅云应助LiQi采纳,获得10
18秒前
ANG完成签到 ,获得积分10
18秒前
默默的无敌完成签到,获得积分10
18秒前
19秒前
22秒前
22秒前
24秒前
24秒前
24秒前
晨陌兮客发布了新的文献求助10
24秒前
Loooong应助阿衡采纳,获得10
25秒前
25秒前
圈儿完成签到,获得积分10
27秒前
28秒前
sohee发布了新的文献求助30
28秒前
28秒前
峥嵘岁月发布了新的文献求助10
29秒前
高分求助中
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 2500
振动分析基础 -- (美)L_米罗维奇著;上海交通大学理论力学教研室译 1000
Future Approaches to Electrochemical Sensing of Neurotransmitters 1000
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 1000
壮语核心名词的语言地图及解释 900
盐环境来源微生物多相分类及嗜盐古菌基因 组适应性与演化研究 500
A First Course in Bayesian Statistical Methods 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 计算机科学 纳米技术 复合材料 化学工程 遗传学 基因 物理化学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 3912948
求助须知:如何正确求助?哪些是违规求助? 3458306
关于积分的说明 10899580
捐赠科研通 3184586
什么是DOI,文献DOI怎么找? 1760329
邀请新用户注册赠送积分活动 851501
科研通“疑难数据库(出版商)”最低求助积分说明 792716