Construction of Sulfone‐Based Polymer Electrolyte Interface Enables the High Cyclic Stability of 4.6 V LiCoO2 Cathode by In Situ Polymerization

材料科学 阴极 电解质 聚合物 聚合 化学工程 锂(药物) 热稳定性 电极 纳米技术 复合材料 物理化学 医学 内分泌学 化学 工程类
作者
Yuli Huang,Bowei Cao,Xilin Xu,Xiaoyun Li,Kun Zhou,Zhen Geng,Quan Li,Xiqian Yu,Hong Li
出处
期刊:Advanced Energy Materials [Wiley]
卷期号:14 (39) 被引量:6
标识
DOI:10.1002/aenm.202400943
摘要

Abstract Lithium cobalt oxide (LiCoO 2 ) is considered an indispensable cathode material in the realm of consumer electronic batteries due to its high volumetric energy density. However, at a charging cut‐off voltage as high as 4.6 V, significant interfacial side reactions between LiCoO 2 and the electrolyte occur, which adversely impact the battery's cycle performance. The surface‐related issues of LiCoO 2 at high charge voltages not only constrain its utilization in conventional lithium‐ion batteries with liquid electrolytes but also limit its application in solid‐state batteries. Although traditional coating methods using inert inorganic compounds can partially alleviate this issue, their point‐like coatings fail to completely prevent the surface of LiCoO 2 from direct contact with the electrolyte. The exploration of novel surface protection strategies for LiCoO 2 remains imperative to address the associated challenges. Herein, introducing a sulfone‐based polymer electrolyte interface is proposed on the surface of LiCoO 2 using methyl vinyl sulfone (MVS) through in situ polymerization. Remarkably, LiCoO 2 with sulfone‐based polymer electrolyte interface exhibits a capacity retention rate of 83% after 500 cycles when employing a carbonate electrolyte without additives at a charge cut‐off voltage of 4.6 V. Furthermore, the LiCoO 2 and polymer electrolyte interface exhibits exceptional cycle stability when paired with polyether solid electrolytes that do not possess high voltage tolerance. Moreover, the incorporation of a polymer electrolyte interface not only enhances the cycle stability of LiCoO 2 but also improves its thermal stability. This work presents novel research perspectives for exploring high‐voltage stable LiCoO 2 .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
哈哈哈哈发布了新的文献求助20
刚刚
Hhh发布了新的文献求助10
1秒前
1秒前
KevinWang完成签到,获得积分10
2秒前
李健应助科研通管家采纳,获得10
2秒前
科研通AI5应助朴实的故事采纳,获得10
2秒前
鸣笛应助科研通管家采纳,获得10
3秒前
浮游应助科研通管家采纳,获得10
3秒前
NatureScience应助科研通管家采纳,获得20
3秒前
星辰大海应助科研通管家采纳,获得10
3秒前
丘比特应助科研通管家采纳,获得10
3秒前
鸣笛应助科研通管家采纳,获得20
3秒前
Owen应助勤奋的小笼包采纳,获得10
3秒前
李爱国应助科研通管家采纳,获得10
3秒前
3秒前
3秒前
打打应助科研通管家采纳,获得10
3秒前
3秒前
3秒前
爆米花应助科研通管家采纳,获得10
3秒前
3秒前
111发布了新的文献求助20
4秒前
Sen完成签到 ,获得积分10
5秒前
asdzzzas完成签到,获得积分20
5秒前
6秒前
充电宝应助大气靳采纳,获得10
7秒前
柠檬发布了新的文献求助10
7秒前
7秒前
嗯哼完成签到,获得积分20
8秒前
8秒前
Ting222发布了新的文献求助10
8秒前
陈欣羽发布了新的文献求助10
8秒前
aswed完成签到,获得积分10
9秒前
无花果应助疯狂的咖啡豆采纳,获得20
9秒前
totoro发布了新的文献求助10
9秒前
11秒前
李健的小迷弟应助琉璃脆采纳,获得10
11秒前
12秒前
13秒前
可耐的晟睿完成签到 ,获得积分10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
肥厚型心肌病新致病基因突变的筛选验证和功能研究 500
Founding Fathers The Shaping of America 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 460
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4565478
求助须知:如何正确求助?哪些是违规求助? 3989166
关于积分的说明 12351929
捐赠科研通 3660493
什么是DOI,文献DOI怎么找? 2017230
邀请新用户注册赠送积分活动 1051568
科研通“疑难数据库(出版商)”最低求助积分说明 939264