Rapid discrimination between wild and cultivated Ophiocordyceps sinensis through comparative analysis of label-free SERS technique and mass spectrometry

质谱法 生物 化学 色谱法
作者
Qinghua Liu,Jia-Wei Tang,Zhang-Wen Ma,Yong-Xuan Hong,Quan Yuan,Jie Chen,Xin‐Ru Wen,Yurong Tang,Liang Wang
出处
期刊:Current research in food science [Elsevier BV]
卷期号:9: 100820-100820 被引量:2
标识
DOI:10.1016/j.crfs.2024.100820
摘要

Ophiocordyceps sinensis is a genus of ascomycete fungi that has been widely used as a valuable tonic or medicine. However, due to over-exploitation and the destruction of natural ecosystems, the shortage of wild O. sinensis resources has led to an increase in artificially cultivated O. sinensis. To rapidly and accurately identify the molecular differences between cultivated and wild O. sinensis, this study employs surface-enhanced Raman spectroscopy (SERS) combined with machine learning algorithms to distinguish the two O. sinensis categories. Specifically, we collected SERS spectra for wild and cultivated O. sinensis and validated the metabolic profiles of SERS spectra using Ultra-Performance Liquid Chromatography coupled with Orbitrap High-Resolution Mass Spectrometry (UPLC-Orbitrap-HRMS). Subsequently, we constructed machine learning classifiers to mine potential information from the spectral data, and the spectral feature importance map is determined through an optimized algorithm. The results indicate that the representative characteristic peaks in the SERS spectra are consistent with the metabolites identified through metabolomics analysis, confirming the feasibility of the SERS method. The optimized support vector machine (SVM) model achieved the most accurate and efficient capacity in discriminating between wild and cultivated O. sinensis (accuracy = 98.95%, 5-fold cross-validation = 98.38%, time = 0.89s). The spectral feature importance map revealed subtle compositional differences between wild and cultivated O. sinensis. Taken together, these results are expected to enable the application of SERS in the quality control of O. sinensis raw materials, providing a foundation for the efficient and rapid identification of their quality and origin.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Akim应助香山叶正红采纳,获得10
1秒前
222222发布了新的文献求助10
1秒前
1秒前
2秒前
Hina完成签到,获得积分10
2秒前
dudu发布了新的文献求助10
4秒前
半夏发布了新的文献求助10
4秒前
5秒前
悠然发布了新的文献求助10
6秒前
顾己发布了新的文献求助10
6秒前
7秒前
8秒前
8秒前
8秒前
小米粥完成签到,获得积分10
8秒前
8秒前
8秒前
Tao完成签到,获得积分10
9秒前
无奈的灵松完成签到 ,获得积分10
9秒前
左一完成签到,获得积分10
10秒前
10秒前
10秒前
狂野世立发布了新的文献求助10
10秒前
嘻嘻哈哈完成签到 ,获得积分10
10秒前
10秒前
科研小哥发布了新的文献求助10
10秒前
酷波er应助Amanda采纳,获得10
10秒前
斯文败类应助cheeen54采纳,获得10
11秒前
小杰完成签到 ,获得积分10
11秒前
11秒前
xiaowang完成签到,获得积分10
11秒前
斯文败类应助谦让碧菡采纳,获得10
12秒前
12秒前
充电宝应助柚子采纳,获得10
12秒前
liyajuan发布了新的文献求助10
13秒前
13秒前
风险事件发布了新的文献求助10
14秒前
大大怪完成签到,获得积分10
14秒前
繁荣的凝荷完成签到 ,获得积分10
14秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Topophrenia: Place, Narrative, and the Spatial Imagination 200
Recent Advances in Environmental Science from the Euro-Mediterranean and Surrounding Regions (3rd Edition) 200
New Syntheses with Carbon Monoxide 200
Faber on mechanics of patent claim drafting 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3834587
求助须知:如何正确求助?哪些是违规求助? 3377081
关于积分的说明 10496404
捐赠科研通 3096557
什么是DOI,文献DOI怎么找? 1705041
邀请新用户注册赠送积分活动 820414
科研通“疑难数据库(出版商)”最低求助积分说明 772031