亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Cardiovascular predicted risk: A population-based comparison of the pooled cohorts equation and prevent

医学 人口 内科学 心脏病学 环境卫生
作者
Rodrigo M. Carrillo‐Larco
出处
期刊:International Journal of Cardiology [Elsevier BV]
卷期号:414: 132423-132423
标识
DOI:10.1016/j.ijcard.2024.132423
摘要

Background While the new cardiovascular risk score (PREVENT) has significant improvements, its implementation may lead to significant changes in the distribution of atherosclerotic cardiovascular diseases (ASCVD) in the United States. We aimed to quantify and characterize the distribution of the 10-year predicted absolute ASCVD risk using the Pooled Cohorts Equation (PCE) and PREVENT. Methods We utilized the latest (2017-March 2020) round of the National Health and Nutrition Examination Survey (NHANES). Accounting for the complex survey design of the NHANES, we computed the mean predicted ASCVD risk overall and by sex, race, and education; similarly, we computed the prevalence of cardiovascular risk groups (<5%, 5%–7.4%, 7.5%–19.9%, and ≥ 20%). Results The study included 3845 observations, representing 109,692,509 people. Using the PREVENT calculator resulted in a reduction of the mean 10-year ASCVD absolute risk by half compared to the PCE: 9.1% vs 4.7%. Under the PCE, the high-risk category accounted for 12.5% of the population, whereas under PREVENT it fell to 0.4%. Among those previously classified as high-risk under the PCE, 3.5% would remain in this category with PREVENT, while 93% would be reclassified as intermediate risk. Conclusions The adoption of the novel cardiovascular risk score, PREVENT, could lower the average predicted ASCVD risk and reduce the prevalence of high-risk individuals. While this shift might suggest improved cardiovascular health, it could also lead to complacency, potentially undermining ongoing public health efforts aimed at preventing cardiovascular disease.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
who完成签到 ,获得积分10
8秒前
27秒前
大个应助魏伯安采纳,获得10
28秒前
从容芮应助科研通管家采纳,获得10
31秒前
bkagyin应助科研通管家采纳,获得10
31秒前
从容芮应助科研通管家采纳,获得10
31秒前
您得疼完成签到,获得积分20
33秒前
幽默尔蓝发布了新的文献求助10
34秒前
35秒前
Linden_bd完成签到 ,获得积分10
39秒前
morena发布了新的文献求助10
41秒前
努力的淼淼完成签到 ,获得积分10
51秒前
52秒前
55秒前
幽默尔蓝完成签到,获得积分10
57秒前
魏伯安发布了新的文献求助10
59秒前
litianyuan发布了新的文献求助10
59秒前
zuoteamleader完成签到,获得积分10
1分钟前
keyantong发布了新的文献求助10
1分钟前
1分钟前
litianyuan完成签到,获得积分10
1分钟前
功夫梦发布了新的文献求助10
1分钟前
JamesPei应助旅行的小七仔采纳,获得10
1分钟前
功夫梦完成签到,获得积分20
1分钟前
Hello应助小懒猪采纳,获得10
1分钟前
旅行的小七仔完成签到,获得积分10
1分钟前
1分钟前
2分钟前
Ava应助zzzz采纳,获得10
2分钟前
2分钟前
2分钟前
toto发布了新的文献求助20
2分钟前
热心的银耳汤完成签到 ,获得积分10
2分钟前
王越发布了新的文献求助10
2分钟前
从容芮应助科研通管家采纳,获得10
2分钟前
从容芮应助科研通管家采纳,获得10
2分钟前
2分钟前
完美世界应助科研通管家采纳,获得10
2分钟前
从容芮应助科研通管家采纳,获得10
2分钟前
所所应助科研通管家采纳,获得10
2分钟前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
The Monocyte-to-HDL ratio (MHR) as a prognostic and diagnostic biomarker in Acute Ischemic Stroke: A systematic review with meta-analysis (P9-14.010) 240
Multiphase Flow and Transport Processes in the Subsurface: A Contribution to the Modeling of Hydrosystems 200
SPECIAL FEATURES OF THE EXCHANGE INTERACTIONS IN ORTHOFERRITE-ORTHOCHROMITES 200
Fast method for calculating cutoff frequencies in single-mode fibres with arbitrary index profiles 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3833707
求助须知:如何正确求助?哪些是违规求助? 3376149
关于积分的说明 10492252
捐赠科研通 3095719
什么是DOI,文献DOI怎么找? 1704674
邀请新用户注册赠送积分活动 820063
科研通“疑难数据库(出版商)”最低求助积分说明 771792