Automated Identification of Fall-related Injuries in Unstructured Clinical Notes

鉴定(生物学) 医学 医疗急救 毒物控制 植物 生物
作者
Wendong Ge,Lilian Maria Godeiro Coelho,Maria A. Donahue,Hunter Rice,Deborah Blacker,John Hsu,Joseph P. Newhouse,Sonia Hernández–Dı́az,Sebastien Haneuse,M. Brandon Westover,Lidia M.V.R. Moura
出处
期刊:American Journal of Epidemiology [Oxford University Press]
被引量:3
标识
DOI:10.1093/aje/kwae240
摘要

Abstract Fall-related injuries (FRIs) are a major cause of hospitalizations among older patients, but identifying them in unstructured clinical notes poses challenges for large-scale research. In this study, we developed and evaluated Natural Language Processing (NLP) models to address this issue. We utilized all available clinical notes from the Mass General Brigham for 2,100 older adults, identifying 154,949 paragraphs of interest through automatic scanning for FRI-related keywords. Two clinical experts directly labeled 5,000 paragraphs to generate benchmark-standard labels, while 3,689 validated patterns were annotated, indirectly labeling 93,157 paragraphs as validated-standard labels. Five NLP models, including vanilla BERT, RoBERTa, Clinical-BERT, Distil-BERT, and SVM, were trained using 2,000 benchmark paragraphs and all validated paragraphs. BERT-based models were trained in three stages: Masked Language Modeling, General Boolean Question Answering (QA), and QA for FRI. For validation, 500 benchmark paragraphs were used, and the remaining 2,500 for testing. Performance metrics (precision, recall, F1 scores, Area Under ROC [AUROC] or Precision-Recall [AUPR] curves) were employed by comparison, with RoBERTa showing the best performance. Precision was 0.90 [0.88-0.91], recall [0.90-0.93], F1 score 0.90 [0.89-0.92], AUROC and AUPR curves of 0.96 [0.95-0.97]. These NLP models accurately identify FRIs from unstructured clinical notes, potentially enhancing clinical notes-based research efficiency.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
情怀应助li采纳,获得30
刚刚
科目三应助东东采纳,获得10
1秒前
紧张的大象完成签到 ,获得积分10
1秒前
ccccchen发布了新的文献求助30
3秒前
4秒前
大勺完成签到 ,获得积分10
8秒前
打打应助执着的鹏煊采纳,获得10
9秒前
Ywd驳回了SYLH应助
10秒前
11秒前
领导范儿应助ljs采纳,获得10
11秒前
lilei完成签到,获得积分10
12秒前
13秒前
16秒前
彭于晏应助可口可乐采纳,获得10
16秒前
栀然完成签到,获得积分10
18秒前
19秒前
SharonYYZ应助旷野采纳,获得10
20秒前
21秒前
22秒前
22秒前
张先生2365完成签到,获得积分10
22秒前
爆米花应助晚星采纳,获得10
23秒前
淡淡乐巧完成签到 ,获得积分10
23秒前
DrLiu完成签到,获得积分10
24秒前
cookie完成签到,获得积分10
24秒前
26秒前
想跟这个世界讲个道理完成签到,获得积分10
26秒前
具体问题具体分析完成签到,获得积分10
26秒前
yaaabo完成签到,获得积分10
26秒前
动听的半莲完成签到 ,获得积分10
27秒前
28秒前
Fazie发布了新的文献求助10
28秒前
John发布了新的文献求助10
28秒前
shrimp5215完成签到,获得积分10
29秒前
愉快西牛完成签到 ,获得积分10
29秒前
fubaozhe完成签到,获得积分10
29秒前
30秒前
Amber陆完成签到 ,获得积分10
31秒前
丘比特应助cookie采纳,获得10
31秒前
xxiao完成签到,获得积分10
31秒前
高分求助中
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Peking Blues // Liao San 300
Political Ideologies Their Origins and Impact 13 edition 240
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3801141
求助须知:如何正确求助?哪些是违规求助? 3346809
关于积分的说明 10330527
捐赠科研通 3063158
什么是DOI,文献DOI怎么找? 1681402
邀请新用户注册赠送积分活动 807549
科研通“疑难数据库(出版商)”最低求助积分说明 763728