Novel Adaptive Path-Smoothening Optimization Method for Mobile Robots

路径(计算) 计算机科学 移动机器人 机器人 数学优化 数学 人工智能 计算机网络
作者
Shuyong Duan,Yuanyang Qi,L. X. ZHANG,Yulong Li,Fu Wang,G. R. Liu
出处
期刊:International Journal of Computational Methods [World Scientific]
标识
DOI:10.1142/s0219876224500051
摘要

A safe and smooth operating path is a prerequisite for mobile robots to accomplish tasks. Although the existing path optimization methods improve the smoothness of the planned path by introducing Bezier curve to locally optimize the path with regard to turning points, most of these methods manually select the position of control points and subjectively analyze the feasibility of the optimized path. It is argued unfavorably that it exhibits strong subjectivity and cumbersome selection process. To fill this gap, an adaptive path-smoothening optimization method is proposed in this study, which combines neural network, genetic algorithm, and Bezier curve to transform the path smoothing problem into an optimization problem. It rapidly determines the position of the optimal control point based on comprehension of constraints, e.g., path safety, curvature and kinematic restrains of the robot. The currently proposed method resolves the long-standing problems of strong subjectivity, cumbersome steps, and thus low efficiency in the selection process of control points, and lays the theoretical groundwork for smoothening the locus and path. To start with, according to the actual working conditions, the dataset corresponding to the position of the control point and the path deviation is constructed, and the neural network algorithm is used to solve the prediction model of the path deviation, so as to obtain the mapping relationship between the length and included angle of the control edge in the second-order Bezier curve and the path deviation. Subsequently, with reference to the prediction model of path deviation, a reliability evaluation function is formulated by comprehending multiple influential factors of mobile robot motion safety and path smoothness. The genetic algorithm is then introduced to detect the satisfactory control points in different environments. The currently proposed method is verified by experiments in different operating environments. The study results show that the currently proposed adaptive path-smoothening optimization method exhibits remarkably superior applicability and effectiveness compared to the currently prevailing methods. It demonstrates advantages of fast path planning, reduced path turning points, and desirable path smoothness. In addition, it can also ensure the safety of mobile robot along the planned path as availed by a pre-set criterion.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
猪猪hero发布了新的文献求助10
1秒前
打打应助略略略采纳,获得10
2秒前
赵萌发布了新的文献求助10
3秒前
4秒前
成666完成签到,获得积分10
4秒前
大男完成签到,获得积分10
5秒前
LA关注了科研通微信公众号
6秒前
卢小白完成签到,获得积分10
7秒前
8秒前
默默发布了新的文献求助10
8秒前
10秒前
鳗鱼白风完成签到,获得积分20
11秒前
无奈天亦完成签到,获得积分10
11秒前
dawang发布了新的文献求助10
11秒前
北海未暖完成签到,获得积分10
13秒前
13秒前
魔幻完成签到,获得积分10
13秒前
整齐乐荷完成签到,获得积分10
14秒前
李博士发布了新的文献求助10
15秒前
15秒前
潇湘完成签到 ,获得积分10
15秒前
qqqyy完成签到,获得积分10
16秒前
16秒前
16秒前
zl发布了新的文献求助10
17秒前
Tzzl0226发布了新的文献求助10
18秒前
19秒前
超级雨安完成签到,获得积分20
19秒前
if完成签到 ,获得积分10
19秒前
20秒前
Orange应助要减肥的含卉采纳,获得30
20秒前
20秒前
刘倩发布了新的文献求助10
21秒前
鳗鱼白风发布了新的文献求助10
21秒前
干净的烧鹅完成签到,获得积分10
22秒前
打打应助萨克麦迪采纳,获得10
22秒前
隐形曼青应助默默采纳,获得10
23秒前
思源应助222采纳,获得20
23秒前
dawang完成签到,获得积分20
23秒前
姜晓冉关注了科研通微信公众号
24秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Introduction to Strong Mixing Conditions Volumes 1-3 500
Understanding Interaction in the Second Language Classroom Context 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3808902
求助须知:如何正确求助?哪些是违规求助? 3353589
关于积分的说明 10366149
捐赠科研通 3069892
什么是DOI,文献DOI怎么找? 1685835
邀请新用户注册赠送积分活动 810743
科研通“疑难数据库(出版商)”最低求助积分说明 766304