WGformer: A Weibull-Gaussian Informer based model for wind speed prediction

计算机科学 威布尔分布 高斯分布 风速 人工智能 统计 气象学 数学 量子力学 物理
作者
Ziyi Shi,Li Jia,Zheyuan Jiang,Li Huang,Chengqing Yu,Xiwei Mi
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier BV]
卷期号:131: 107891-107891 被引量:1
标识
DOI:10.1016/j.engappai.2024.107891
摘要

Accurate wind speed forecasting can improve energy management efficiency and promote the use of renewable energy. However, the inherent nonlinearity and fluctuation of wind speed make prediction challenging. To address these issues, we design an efficient Informer-based model, with improved calculation speed, forecasting accuracy and generalization ability. The proposed model in this paper reasonably integrates the Weibull-Gaussian transform, Informer and kernel mean square error loss and addresses the combination of various components. The Weibull-Gaussian transform is used as the data preprocessing module, which can remove non-Gaussian characteristics from the original data, and thus achieve noise reduction. The Informer is used as the main predictor, which can efficiently output accurate forecasting results based on an encoder-decoder architecture and self-attention mechanism. The kernel mean square error loss function, which shows strong robustness to outliers, is used to evaluate the nonlinearity of errors in reproducing kernel Hilbert space. To evaluate the performance of the proposed model, it is compared with several widely used models and state-of-the-art models. The experimental results indicate that the proposed model weakens the effect of outliers, yields high forecasting accuracy with mean square error = 0.35, and outperforms the baselines up to 8.5% on three datasets.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
CodeCraft应助reading gene采纳,获得10
刚刚
Mason完成签到,获得积分10
刚刚
QIQI完成签到,获得积分10
刚刚
1秒前
朗读卿发布了新的文献求助10
1秒前
李三三完成签到,获得积分10
1秒前
辞清完成签到 ,获得积分10
1秒前
执着银耳汤完成签到,获得积分10
2秒前
积极醉柳完成签到,获得积分10
2秒前
内向沛槐完成签到,获得积分20
2秒前
3秒前
ZDX发布了新的文献求助10
3秒前
汉堡包应助阿猫采纳,获得10
3秒前
迷人金针菇完成签到,获得积分20
3秒前
锐克5完成签到,获得积分20
4秒前
min20210429完成签到,获得积分10
4秒前
无宇伦比完成签到,获得积分10
4秒前
Kay完成签到,获得积分10
4秒前
朗读卿完成签到 ,获得积分10
4秒前
随遇而安应助CrysField采纳,获得40
4秒前
要减肥的chao完成签到,获得积分10
4秒前
SYLH应助zzz采纳,获得10
5秒前
加油吧少年完成签到,获得积分10
5秒前
情怀应助认真咖啡豆采纳,获得10
6秒前
6秒前
6秒前
南湖秋水发布了新的文献求助10
7秒前
7秒前
小陈完成签到,获得积分10
7秒前
Liu完成签到,获得积分10
7秒前
David完成签到,获得积分10
8秒前
脑洞疼应助imss1采纳,获得10
9秒前
ma完成签到,获得积分10
9秒前
jjj完成签到,获得积分10
9秒前
Amanda完成签到,获得积分10
10秒前
wang完成签到,获得积分10
10秒前
bigpluto完成签到,获得积分10
10秒前
Stella完成签到,获得积分10
11秒前
11秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 700
Immigrant Incorporation in East Asian Democracies 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3972999
求助须知:如何正确求助?哪些是违规求助? 3517320
关于积分的说明 11187840
捐赠科研通 3252967
什么是DOI,文献DOI怎么找? 1796715
邀请新用户注册赠送积分活动 876504
科研通“疑难数据库(出版商)”最低求助积分说明 805747