材料科学
石墨烯
环氧树脂
复合材料
纳米复合材料
放松(心理学)
应力松弛
压力(语言学)
纳米技术
蠕动
心理学
语言学
社会心理学
哲学
作者
Alperen Acar,Okan Bakbak,Özgen Ü. Çolak
标识
DOI:10.1177/07316844241238838
摘要
In this study, strain level and temperature-dependent stress relaxation behavior of neat epoxy and graphene-epoxy nanocomposites are experimentally investigated. Tests are performed for neat epoxy, graphene-epoxy nanocomposite with content of 0.1 wt% and 0.5 wt% graphene. To determine the effect of strain levels on relaxation behavior, three constant strain levels are chosen: 3.16%, 7.15%, and 35.5%. Those strain levels are chosen to correspond to different zones on the stress–strain curves as: viscoelastic region, yield region, and visco-plastic region. Results have shown that with the addition of 0.1 wt% graphene, relaxation modulus improved 41% at 3.16% constant strain. The effect of graphene is less effective at high strain values: for 7.15% strain, the change in relaxation modulus is 32%, and at 35.5 %strain, the change is 21.25%. In addition, tests are performed for three temperature values: 23, 65, and 120°C to determine the effect of temperature on the relaxation behavior. As expected, nano composition has an improved effect on the stress relaxation behavior. An increasing temperature increases the stress relaxation values. At room temperature (for 7.15% constant strain level) the drop in relaxation modulus for neat epoxy is 32%, this value drops to 22% with the addition of 0.1 wt% graphene. At 65°C, the rate of decrease in modulus with the addition of graphene is almost unchanged. At 120°C, the relaxation performance of the material slightly decreases. Therefore, as a novel result of the research, it is determined through the conducted experiments that increasing temperature lessens the improvement effect of graphene composition on the stress relaxation behavior.
科研通智能强力驱动
Strongly Powered by AbleSci AI