Shortening Emergency Medical Response Time with Joint Operations of Uncrewed Aerial Vehicles with Ambulances

计算机科学 马尔可夫决策过程 背景(考古学) 紧急医疗服务 排队论 运筹学 软件部署 马尔可夫过程 工程类 医疗急救 医学 计算机网络 古生物学 操作系统 统计 生物 数学
作者
Xiaoquan Gao,Nan Kong,Paul M. Griffin
出处
期刊:Manufacturing & Service Operations Management [Institute for Operations Research and the Management Sciences]
卷期号:26 (2): 447-464 被引量:7
标识
DOI:10.1287/msom.2022.0166
摘要

Problem definition: Uncrewed aerial vehicles (UAVs) are transforming emergency service logistics applications across sectors, offering easy deployment and rapid response. In the context of emergency medical services (EMS), UAVs have the potential to augment ambulances by leveraging bystander assistance, thereby reducing response times for delivering urgent medical interventions and improving EMS outcomes. Notably, the use of UAVs for opioid overdose cases is particularly promising as it addresses the challenges faced by ambulances in delivering timely medication. This study aims to optimize the integration of UAVs and bystanders into EMS in order to minimize average response times for overdose interventions. Methodology/results: We formulate the joint operation of UAVs with ambulances through a Markov decision process that captures random emergency vehicle travel times and bystander availability. We apply an approximate dynamic programming approach to mitigate the solution challenges from high-dimensional state variables and complex decisions through a neural network-based approximation of the value functions (NN-API). To design the approximation, we construct a set of basis functions based on queueing and geographic properties of the UAV-augmented EMS system. Managerial implications: The simulation results suggest that our NN-API policy tends to outperform several noteworthy rule- and optimization-based benchmark policies in terms of accumulated rewards, particularly for situations that are primarily characterized by high request arrival rates and a limited number of available ambulances and UAVs. The results also demonstrate the benefits of incorporating UAVs into the EMS system and the effectiveness of an intelligent real-time operations strategy in addressing capacity shortages, which are often a problem in rural areas of the United States. Additionally, the results provide insights into specific contributions of each dispatching or redeployment strategy to overall performance improvement. Funding: This work was supported by the National Science [Grant 1761022]. Supplemental Material: The online appendix is available at https://doi.org/10.1287/msom.2022.0166
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
我是老大应助Meidina采纳,获得10
1秒前
1秒前
1秒前
2秒前
wonderingria完成签到,获得积分10
4秒前
YY完成签到,获得积分10
5秒前
鬼笔环肽发布了新的文献求助10
5秒前
qqqq发布了新的文献求助40
6秒前
dhts应助生动的书本采纳,获得10
6秒前
ZW完成签到,获得积分10
6秒前
思源应助小雨采纳,获得10
6秒前
123完成签到,获得积分10
7秒前
科研通AI6应助由十三采纳,获得10
7秒前
8秒前
dagongren完成签到,获得积分10
8秒前
8秒前
量子星尘发布了新的文献求助150
10秒前
慕青应助田...采纳,获得10
10秒前
你还要猫怎样完成签到,获得积分10
10秒前
JJJ发布了新的文献求助30
10秒前
CodeCraft应助留胡子的凡松采纳,获得10
10秒前
summer完成签到,获得积分10
11秒前
12秒前
12秒前
14秒前
14秒前
小柔发布了新的文献求助10
14秒前
JJ完成签到,获得积分10
16秒前
17秒前
cfsyyfujia发布了新的文献求助10
17秒前
一颗小圆圆完成签到,获得积分10
17秒前
hoyan完成签到,获得积分10
17秒前
丸子茶发布了新的文献求助10
18秒前
19秒前
香蕉孤风完成签到,获得积分10
19秒前
留胡子的凡松完成签到,获得积分20
19秒前
量子星尘发布了新的文献求助150
20秒前
努力哥完成签到,获得积分10
20秒前
情怀应助Kgron采纳,获得10
21秒前
科研通AI6应助孙朱珠采纳,获得10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
高温高圧下融剤法によるダイヤモンド単結晶の育成と不純物の評価 5000
Treatise on Geochemistry (Third edition) 1600
Vertebrate Palaeontology, 5th Edition 500
ISO/IEC 24760-1:2025 Information security, cybersecurity and privacy protection — A framework for identity management 500
碳捕捉技术能效评价方法 500
Optimization and Learning via Stochastic Gradient Search 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4710819
求助须知:如何正确求助?哪些是违规求助? 4075488
关于积分的说明 12602148
捐赠科研通 3777588
什么是DOI,文献DOI怎么找? 2086760
邀请新用户注册赠送积分活动 1113424
科研通“疑难数据库(出版商)”最低求助积分说明 990947