Shortening Emergency Medical Response Time with Joint Operations of Uncrewed Aerial Vehicles with Ambulances

计算机科学 马尔可夫决策过程 背景(考古学) 紧急医疗服务 排队论 运筹学 软件部署 马尔可夫过程 工程类 医疗急救 医学 计算机网络 古生物学 操作系统 统计 生物 数学
作者
Xiaoquan Gao,Nan Kong,Paul M. Griffin
出处
期刊:Manufacturing & Service Operations Management [Institute for Operations Research and the Management Sciences]
卷期号:26 (2): 447-464 被引量:4
标识
DOI:10.1287/msom.2022.0166
摘要

Problem definition: Uncrewed aerial vehicles (UAVs) are transforming emergency service logistics applications across sectors, offering easy deployment and rapid response. In the context of emergency medical services (EMS), UAVs have the potential to augment ambulances by leveraging bystander assistance, thereby reducing response times for delivering urgent medical interventions and improving EMS outcomes. Notably, the use of UAVs for opioid overdose cases is particularly promising as it addresses the challenges faced by ambulances in delivering timely medication. This study aims to optimize the integration of UAVs and bystanders into EMS in order to minimize average response times for overdose interventions. Methodology/results: We formulate the joint operation of UAVs with ambulances through a Markov decision process that captures random emergency vehicle travel times and bystander availability. We apply an approximate dynamic programming approach to mitigate the solution challenges from high-dimensional state variables and complex decisions through a neural network-based approximation of the value functions (NN-API). To design the approximation, we construct a set of basis functions based on queueing and geographic properties of the UAV-augmented EMS system. Managerial implications: The simulation results suggest that our NN-API policy tends to outperform several noteworthy rule- and optimization-based benchmark policies in terms of accumulated rewards, particularly for situations that are primarily characterized by high request arrival rates and a limited number of available ambulances and UAVs. The results also demonstrate the benefits of incorporating UAVs into the EMS system and the effectiveness of an intelligent real-time operations strategy in addressing capacity shortages, which are often a problem in rural areas of the United States. Additionally, the results provide insights into specific contributions of each dispatching or redeployment strategy to overall performance improvement. Funding: This work was supported by the National Science [Grant 1761022]. Supplemental Material: The online appendix is available at https://doi.org/10.1287/msom.2022.0166
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
FOX完成签到,获得积分10
3秒前
苹果果汁发布了新的文献求助10
3秒前
电击小子发布了新的文献求助10
3秒前
lyw完成签到 ,获得积分10
4秒前
两袖清风完成签到 ,获得积分10
4秒前
甜美无剑完成签到,获得积分10
4秒前
火星上以柳完成签到,获得积分10
5秒前
王禹涵完成签到 ,获得积分10
6秒前
ding完成签到,获得积分20
9秒前
电击小子完成签到,获得积分10
11秒前
13秒前
xx完成签到 ,获得积分20
14秒前
zhuzhu发布了新的文献求助10
18秒前
大模型应助苹果果汁采纳,获得10
19秒前
NexusExplorer应助Steven采纳,获得10
20秒前
科研通AI2S应助woxin采纳,获得10
20秒前
20秒前
科研通AI5应助七喜采纳,获得10
22秒前
CipherSage应助kai采纳,获得10
23秒前
dadad发布了新的文献求助10
24秒前
Wtony完成签到 ,获得积分10
24秒前
小猪吹风完成签到 ,获得积分10
27秒前
29秒前
FashionBoy应助秋言采纳,获得10
29秒前
火星上的飞兰完成签到,获得积分10
30秒前
耶路生完成签到,获得积分10
33秒前
Shu发布了新的文献求助10
33秒前
核动力咕咕姬完成签到,获得积分10
34秒前
34秒前
搜集达人应助dadad采纳,获得10
34秒前
莫莫关注了科研通微信公众号
36秒前
36秒前
葱葱不吃葱完成签到 ,获得积分10
39秒前
39秒前
77完成签到 ,获得积分10
39秒前
KIE发布了新的文献求助10
40秒前
秋言发布了新的文献求助10
42秒前
devilito发布了新的文献求助10
42秒前
加油加油发布了新的文献求助10
43秒前
科研通AI5应助任性的凝云采纳,获得10
46秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3778761
求助须知:如何正确求助?哪些是违规求助? 3324313
关于积分的说明 10217843
捐赠科研通 3039436
什么是DOI,文献DOI怎么找? 1668081
邀请新用户注册赠送积分活动 798544
科研通“疑难数据库(出版商)”最低求助积分说明 758401