Driver’s facial expression recognition: A comprehensive survey

面部表情 计算机科学 背景(考古学) 分类 幸福 愤怒 人工智能 心理学 社会心理学 生物 精神科 古生物学
作者
Ibtissam Saadi,Douglas W. Cunningham,Abdelmalik Taleb‐Ahmed,Abdenour Hadid,Yassin El Hillali
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:242: 122784-122784 被引量:1
标识
DOI:10.1016/j.eswa.2023.122784
摘要

Driving is an integral part of daily life for millions of people worldwide, and it has a profound impact on road safety and human health. The emotional state of the driver, including feelings of anger, happiness, or fear, can significantly affect their ability to make safe driving decisions. Recognizing the facial expressions of drivers(DFER) has emerged as a promising technique for improving road safety and can provide valuable information about their emotions, This information can be used by intelligent transportation systems (ITS), like advanced driver assistance systems (ADAS) to take appropriate decision, such as alerting the driver or intervening in the driving process, to prevent the potential risks. This survey paper presents a comprehensive survey of recent studies that focus on the problem of recognizing the facial expression of driver recognition in the driving context from 2018 to March 2023. Specifically, we examine studies that address the recognition of the driver's emotion using facial expressions and explore the challenges that exist in this field, such as illumination conditions, occlusion, and head poses. Our survey includes an analysis of different techniques and methods used to identify and categorize specific expressions or emotions of the driver. We begin by reviewing and comparing available datasets and summarizing state-of-the-art methods, including machine learning-based methods, deep learning-based methods, and hybrid methods. We also identify limitations and potential areas for improvement. Overall, our survey highlights the importance of recognizing driver facial expressions in improving road safety and provides valuable insights into recent developments and future research directions in this field.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
充电宝应助酷炫忆梅采纳,获得10
刚刚
欣喜冰萍发布了新的文献求助10
1秒前
融化的汪发布了新的文献求助30
1秒前
ceci发布了新的文献求助10
2秒前
完美世界应助受伤凌蝶采纳,获得10
2秒前
科研乞丐发布了新的文献求助10
2秒前
李馨发布了新的文献求助10
3秒前
Atobe发布了新的文献求助10
3秒前
4秒前
坦率道之发布了新的文献求助10
4秒前
开心的小笼包完成签到,获得积分20
4秒前
小蘑菇应助NJ采纳,获得10
4秒前
董又又又又完成签到,获得积分10
5秒前
kk完成签到,获得积分10
6秒前
7秒前
SMJ发布了新的文献求助10
7秒前
7秒前
LouieHuang完成签到,获得积分10
8秒前
Hello应助矮小的猎豹采纳,获得10
8秒前
10秒前
欣喜冰萍完成签到,获得积分10
10秒前
xie完成签到,获得积分10
11秒前
李健应助草帽小子采纳,获得10
11秒前
七七完成签到,获得积分10
12秒前
ceci完成签到,获得积分10
12秒前
星辰大海应助欣喜的以丹采纳,获得10
12秒前
王浩发布了新的文献求助10
13秒前
NJ完成签到,获得积分10
14秒前
loyal完成签到,获得积分10
14秒前
15秒前
CodeCraft应助RHJ采纳,获得10
15秒前
小马甲应助诗轩采纳,获得10
15秒前
wumandong发布了新的文献求助10
15秒前
皮儿关注了科研通微信公众号
16秒前
害羞雨南发布了新的文献求助10
17秒前
燕子非发布了新的文献求助10
19秒前
无情干饭崽完成签到,获得积分10
20秒前
卡卡咧咧发布了新的文献求助10
21秒前
21秒前
123发布了新的文献求助10
21秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
材料概论 周达飞 ppt 500
Nonrandom distribution of the endogenous retroviral regulatory elements HERV-K LTR on human chromosome 22 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3807134
求助须知:如何正确求助?哪些是违规求助? 3351915
关于积分的说明 10356503
捐赠科研通 3067918
什么是DOI,文献DOI怎么找? 1684783
邀请新用户注册赠送积分活动 809910
科研通“疑难数据库(出版商)”最低求助积分说明 765787