Towards Generalist Biomedical AI

通才与专种 医学教育 医学 生物 生态学 栖息地
作者
Tao Tu,Shekoofeh Azizi,Danny Driess,Mike Schaekermann,Mohamed Amin,Pi-Chuan Chang,Andrew Carroll,Charles T. Lau,Ryutaro Tanno,Sofia Ira Ktena,Anil Palepu,Basil Mustafa,Aakanksha Chowdhery,Yun Liu,Simon Kornblith,David J. Fleet,P. Mansfield,Sushant Prakash,Renee Wong,Sunny Virmani
标识
DOI:10.1056/aioa2300138
摘要

BackgroundMedicine is inherently multimodal, requiring the simultaneous interpretation and integration of insights between many data modalities spanning text, imaging, genomics, and more. Generalist biomedical artificial intelligence systems that flexibly encode, integrate, and interpret these data might better enable impactful applications ranging from scientific discovery to care delivery.MethodsTo catalyze development of these models, we curated MultiMedBench, a new multimodal biomedical benchmark. MultiMedBench encompasses 14 diverse tasks, such as medical question answering, mammography and dermatology image interpretation, radiology report generation and summarization, and genomic variant calling. We then introduced Med-PaLM Multimodal (Med-PaLM M), our proof of concept for a generalist biomedical AI system that flexibly encodes and interprets biomedical data including clinical language, imaging, and genomics with the same set of model weights. To further probe the capabilities and limitations of Med-PaLM M, we conducted a radiologist evaluation of model-generated (and human) chest x-ray reports.ResultsWe observed encouraging performance across model scales. Med-PaLM M reached performance competitive with or exceeding the state of the art on all MultiMedBench tasks, often surpassing specialist models by a wide margin. In a side-by-side ranking on 246 retrospective chest x-rays, clinicians expressed a pairwise preference for Med-PaLM Multimodal reports over those produced by radiologists in up to 40.50% of cases, suggesting potential clinical utility.ConclusionsAlthough considerable work is needed to validate these models in real-world cases and understand if cross-modality generalization is possible, our results represent a milestone toward the development of generalist biomedical artificial intelligence systems. (Funded by Alphabet Inc. and/or a subsidiary thereof.)
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
枫叶完成签到 ,获得积分10
刚刚
FashionBoy应助你hao采纳,获得10
刚刚
刚刚
1秒前
FlipFlops完成签到,获得积分10
1秒前
怀安发布了新的文献求助20
1秒前
姜茶完成签到 ,获得积分10
3秒前
4秒前
888发布了新的文献求助10
6秒前
7秒前
搞怪的靖雁完成签到,获得积分10
10秒前
focco发布了新的文献求助10
10秒前
11秒前
12秒前
allzzwell完成签到 ,获得积分10
13秒前
打打应助大成子采纳,获得10
15秒前
你hao发布了新的文献求助10
16秒前
xiaohuang发布了新的文献求助10
16秒前
18秒前
星辰大海应助森林有木采纳,获得10
19秒前
蛋挞完成签到 ,获得积分10
22秒前
天天快乐应助zhh采纳,获得20
22秒前
25秒前
xiaohuang完成签到,获得积分10
26秒前
weny完成签到,获得积分10
28秒前
科研通AI2S应助科研通管家采纳,获得10
29秒前
在水一方应助科研通管家采纳,获得10
29秒前
英姑应助科研通管家采纳,获得10
30秒前
阔达紫青应助科研通管家采纳,获得10
30秒前
Jasper应助科研通管家采纳,获得10
30秒前
顾矜应助科研通管家采纳,获得10
30秒前
Orange应助科研通管家采纳,获得10
30秒前
大成子发布了新的文献求助10
30秒前
李爱国应助科研通管家采纳,获得10
30秒前
搜集达人应助科研通管家采纳,获得10
30秒前
华仔应助科研通管家采纳,获得10
30秒前
爆米花应助科研通管家采纳,获得10
30秒前
香蕉觅云应助科研通管家采纳,获得10
30秒前
31秒前
ding应助科研通管家采纳,获得10
31秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mixing the elements of mass customisation 300
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3778226
求助须知:如何正确求助?哪些是违规求助? 3323870
关于积分的说明 10216390
捐赠科研通 3039102
什么是DOI,文献DOI怎么找? 1667782
邀请新用户注册赠送积分活动 798389
科研通“疑难数据库(出版商)”最低求助积分说明 758366