控制理论(社会学)
计算机科学
控制器(灌溉)
阻抗控制
机器人
跟踪误差
控制工程
观察员(物理)
扭矩
李雅普诺夫函数
自适应控制
过程(计算)
工程类
控制(管理)
人工智能
非线性系统
物理
量子力学
农学
生物
热力学
操作系统
作者
Tianjiao An,Xinye Zhu,Bing Ma,Jingkai Liang,Yuhang Gao,Bo Dong
标识
DOI:10.1109/yac59482.2023.10401525
摘要
For the problem of dynamic contact force tracking control under human robot collaboration (HRC), we propose a dual closed-loop decentralized adaptive control framework. The dynamic model of reconfigurable robot manipulator (RRM) subsystem is established based on joint torque feedback (JTF) technology. On the basis of fully analyzing the model uncertainty, the method based on decomposition is used to dynamically compensate the model uncertainty. Using Lyapunov theory, the uniform and ultimate boundedness (UUB) of dynamic contact force tracking error and RRM position tracking error in HRC process are confirmed. A neural network (NN) observer is designed to dynamically compensate the uncertainty of controller. Finally, the effectiveness of this method is verified by experiments.
科研通智能强力驱动
Strongly Powered by AbleSci AI