Semantic-Driven Global-Local Cooperative Contrastive Learning for Medical Report Generation

计算机科学 人工智能 自然语言处理 特征学习 过程(计算) 特征(语言学) 代表(政治) 语义相似性 深度学习 相似性(几何) 机器学习 图像(数学) 语言学 哲学 政治 政治学 法学 操作系统
作者
Shuchang Ye,Mingyuan Meng,Dagan Feng,Jinman Kim
标识
DOI:10.1109/dicta60407.2023.00042
摘要

As the demand for radiology continues to increase, the shortage of specialized professionals becomes a challenging issue. Such shortage highlights the need to utilize advancements in artificial intelligence (AI) to automatically generate draft medical reports from radiology images. Recently, the application of contrastive learning has been leveraged in image-to-text generation because it allows the model to learn meaningful representations in latent space by contrasting similar and dissimilar image-text pairs. However, existing approaches to applying contrastive learning in medical report generation are limited by the following: 1) they are performed as an independent pretraining step, which hinders the cooperation between contrastive learning and the subsequent report generation step; 2) these methods are contingent on pairing images with their corresponding reports, thus establishing similarity based solely on this association. Such contingency inadvertently overlooks the situation where unpaired reports could also be relevant to a given image, thereby failing to accurately capture and understand the semantic relationships within the data; and 3) existing contrastive learning in medical report generation only utilizes the global representation, which cannot capture subtle but crucial local visual information. To address these limitations, we propose a Semantic-Driven Global-Local Cooperative Contrastive Learning Network (SGLCCNet), which integrates contrastive learning into the training process of report generation, enriched with semantic information extracted from reports and enhanced by the inclusion of local feature exploration. Extensive experiments on the IU-Xray dataset demonstrate that our method achieved the state-of-the-art. Further, we demonstrate how each of our proposed steps adds to the overall performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
皮皮虾完成签到,获得积分10
2秒前
bkagyin应助黄超明采纳,获得10
2秒前
2秒前
3秒前
梅卡完成签到 ,获得积分10
3秒前
jake完成签到,获得积分10
3秒前
归海凡儿完成签到,获得积分10
5秒前
6秒前
魔幻的小蘑菇完成签到 ,获得积分10
7秒前
量子星尘发布了新的文献求助10
7秒前
7秒前
夜雨诗意完成签到,获得积分10
7秒前
喻紫寒完成签到 ,获得积分10
10秒前
张00完成签到,获得积分10
11秒前
YK完成签到,获得积分0
11秒前
chen完成签到,获得积分10
12秒前
Doc_Ocean完成签到,获得积分10
12秒前
PGZ发布了新的文献求助10
13秒前
黄超明发布了新的文献求助10
13秒前
123完成签到 ,获得积分10
15秒前
17秒前
jackcy完成签到 ,获得积分10
20秒前
shor0414完成签到 ,获得积分10
22秒前
WSY完成签到 ,获得积分10
22秒前
威武画板完成签到 ,获得积分10
22秒前
黄超明完成签到,获得积分10
23秒前
hayden发布了新的文献求助30
23秒前
坚定背包完成签到,获得积分10
24秒前
gy完成签到 ,获得积分10
26秒前
贪玩的醉波完成签到,获得积分10
28秒前
hyx完成签到,获得积分10
30秒前
量子星尘发布了新的文献求助10
32秒前
路在脚下完成签到 ,获得积分10
34秒前
ZNN1234发布了新的文献求助30
37秒前
哈哈完成签到 ,获得积分10
37秒前
jiujieweizi完成签到 ,获得积分10
38秒前
缥缈的冰旋完成签到,获得积分10
38秒前
steven完成签到 ,获得积分10
41秒前
Jieh完成签到,获得积分10
42秒前
42秒前
高分求助中
Africanfuturism: African Imaginings of Other Times, Spaces, and Worlds 3000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 2000
The Oxford Encyclopedia of the History of Modern Psychology 2000
Synthesis of 21-Thioalkanoic Acids of Corticosteroids 1000
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 1000
Structural Equation Modeling of Multiple Rater Data 700
 Introduction to Comparative Public Administration Administrative Systems and Reforms in Europe, Third Edition 3rd edition 590
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3885956
求助须知:如何正确求助?哪些是违规求助? 3428011
关于积分的说明 10757326
捐赠科研通 3152807
什么是DOI,文献DOI怎么找? 1740660
邀请新用户注册赠送积分活动 840338
科研通“疑难数据库(出版商)”最低求助积分说明 785317