Multi-Agent Reinforcement Learning With Decentralized Distribution Correction

强化学习 计算机科学 钢筋 多智能体系统 分散系统 人工智能 分布式计算 工程类 控制(管理) 结构工程
作者
Kuo Li,Qing‐Shan Jia
出处
期刊:IEEE Transactions on Automation Science and Engineering [Institute of Electrical and Electronics Engineers]
卷期号:22: 1684-1696 被引量:12
标识
DOI:10.1109/tase.2024.3369592
摘要

This work considers decentralized multi-agent reinforcement learning (MARL), where the global states and rewards are assumed to be fully observable, while the local behavior policy is preserved locally for resisting adversarial attack. In order to cooperatively accumulate more rewards, the agents exchange messages among a time-varying communication network to reach consensus. For these cooperative tasks, we propose a decentralized actor-critic algorithm, where the agents make individual decisions, but the joint behavior policy is optimized towards more cumulative rewards. We provide the theoretical analysis towards the convergence under the tabular setting and then expand it to nonlinear function approximations. Furthermore, by incorporating decentralized distribution correction, the agents are trained in an off-policy manner for higher sample efficiency. Finally, we conduct experiments to evaluate the algorithms, where the proposed algorithm performs competitively in both stability and asymptotic performance. Note to Practitioners —Fully decentralized MARL algorithms are widely applied in multi-agent systems for generating cooperative behaviors, e.g., multiple unmanned aerial vehicles (UAV) cooperatively performing search and rescue tasks, multiple vehicles efficiently passing a crowded intersection, and multiple robots cooperatively handling cargo or obstacles. Focusing on these potential applications, this work is motivated to improve the sample efficiency of recent decentralized MARL algorithms by incorporating off-policy training approaches. In this work, we reweight historical trajectories via a decentralized average consensus step and develop corresponding policy-optimization procedures, with which previous trajectories could be used to stabilize later iterations. Since the training materials are augmented by historical samples, the sample efficiency is significantly improved, and the training process is stabilized. With the fully decentralized training approach, the proposed algorithms are expected to be applied in large-scale systems, e.g., vehicle teams and UAV groups, for effective real-time control.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
1秒前
欢喜的早晨完成签到,获得积分10
1秒前
1秒前
lst完成签到,获得积分10
1秒前
1秒前
高丽华完成签到,获得积分10
1秒前
杨飞发布了新的文献求助10
2秒前
大气的土豆完成签到 ,获得积分10
2秒前
2秒前
咿呀完成签到,获得积分10
2秒前
嘎嘎发布了新的文献求助200
2秒前
不偷懒就无敌完成签到,获得积分10
3秒前
川ccc发布了新的文献求助10
3秒前
xxy发布了新的文献求助10
3秒前
3秒前
陈腿毛完成签到,获得积分10
4秒前
Owen应助左友铭采纳,获得10
4秒前
Willer完成签到,获得积分10
4秒前
吧KO完成签到,获得积分10
5秒前
天马行空完成签到,获得积分10
5秒前
欧贤书发布了新的文献求助10
5秒前
汉堡包应助xkhxh采纳,获得10
5秒前
搜集达人应助无辜小霜采纳,获得10
6秒前
研友_VZG7GZ应助Shaynin采纳,获得10
6秒前
6秒前
现代化脑完成签到,获得积分10
6秒前
7秒前
难过的小甜瓜完成签到,获得积分10
7秒前
Ltt完成签到,获得积分20
8秒前
bmdeisler发布了新的文献求助10
8秒前
DaSheng完成签到,获得积分0
8秒前
jzh6666发布了新的文献求助10
8秒前
zyw完成签到 ,获得积分10
9秒前
9秒前
spring完成签到,获得积分10
9秒前
尔尔完成签到,获得积分10
10秒前
领导范儿应助芜湖芜湖采纳,获得10
10秒前
端庄蚂蚁完成签到,获得积分10
10秒前
江小鱼在查文献完成签到,获得积分10
11秒前
ssss完成签到,获得积分10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1000
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5482882
求助须知:如何正确求助?哪些是违规求助? 4583608
关于积分的说明 14390932
捐赠科研通 4513013
什么是DOI,文献DOI怎么找? 2473299
邀请新用户注册赠送积分活动 1459278
关于科研通互助平台的介绍 1432917