Multi-Agent Reinforcement Learning With Decentralized Distribution Correction

强化学习 计算机科学 钢筋 多智能体系统 分散系统 人工智能 分布式计算 工程类 控制(管理) 结构工程
作者
Kuo Li,Qing‐Shan Jia
出处
期刊:IEEE Transactions on Automation Science and Engineering [Institute of Electrical and Electronics Engineers]
卷期号:: 1-13
标识
DOI:10.1109/tase.2024.3369592
摘要

This work considers decentralized multi-agent reinforcement learning (MARL), where the global states and rewards are assumed to be fully observable, while the local behavior policy is preserved locally for resisting adversarial attack. In order to cooperatively accumulate more rewards, the agents exchange messages among a time-varying communication network to reach consensus. For these cooperative tasks, we propose a decentralized actor-critic algorithm, where the agents make individual decisions, but the joint behavior policy is optimized towards more cumulative rewards. We provide the theoretical analysis towards the convergence under the tabular setting and then expand it to nonlinear function approximations. Furthermore, by incorporating decentralized distribution correction, the agents are trained in an off-policy manner for higher sample efficiency. Finally, we conduct experiments to evaluate the algorithms, where the proposed algorithm performs competitively in both stability and asymptotic performance. Note to Practitioners —Fully decentralized MARL algorithms are widely applied in multi-agent systems for generating cooperative behaviors, e.g., multiple unmanned aerial vehicles (UAV) cooperatively performing search and rescue tasks, multiple vehicles efficiently passing a crowded intersection, and multiple robots cooperatively handling cargo or obstacles. Focusing on these potential applications, this work is motivated to improve the sample efficiency of recent decentralized MARL algorithms by incorporating off-policy training approaches. In this work, we reweight historical trajectories via a decentralized average consensus step and develop corresponding policy-optimization procedures, with which previous trajectories could be used to stabilize later iterations. Since the training materials are augmented by historical samples, the sample efficiency is significantly improved, and the training process is stabilized. With the fully decentralized training approach, the proposed algorithms are expected to be applied in large-scale systems, e.g., vehicle teams and UAV groups, for effective real-time control.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
止戈完成签到 ,获得积分10
1秒前
现代CC完成签到 ,获得积分10
3秒前
3秒前
Chara_kara完成签到,获得积分10
4秒前
5秒前
pluto应助Chara_kara采纳,获得10
6秒前
xinanan发布了新的文献求助10
7秒前
佐zzz完成签到,获得积分10
8秒前
搜集达人应助砳122222采纳,获得50
9秒前
不会失忆完成签到,获得积分10
11秒前
大马哈鱼发布了新的文献求助10
11秒前
11秒前
我是笨蛋发布了新的文献求助10
12秒前
小蘑菇应助Binbin采纳,获得10
12秒前
XX完成签到,获得积分10
12秒前
OK完成签到,获得积分10
13秒前
思源应助科研通管家采纳,获得10
13秒前
CAOHOU应助科研通管家采纳,获得10
13秒前
CAOHOU应助科研通管家采纳,获得10
13秒前
科研通AI2S应助科研通管家采纳,获得10
13秒前
13秒前
顾矜应助科研通管家采纳,获得10
13秒前
CAOHOU应助科研通管家采纳,获得30
13秒前
赘婿应助科研通管家采纳,获得10
13秒前
科研通AI2S应助科研通管家采纳,获得10
13秒前
CAOHOU应助科研通管家采纳,获得10
14秒前
搜集达人应助科研通管家采纳,获得10
14秒前
丘比特应助科研通管家采纳,获得10
14秒前
14秒前
CAOHOU应助科研通管家采纳,获得10
14秒前
14秒前
14秒前
jack完成签到 ,获得积分10
18秒前
zdnn完成签到,获得积分10
18秒前
Soloconsk发布了新的文献求助10
20秒前
world完成签到,获得积分10
22秒前
Glorious完成签到,获得积分10
24秒前
小匹夫发布了新的文献求助10
25秒前
Soloconsk完成签到,获得积分20
26秒前
kiyo_v完成签到,获得积分10
26秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 1370
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 1000
Implantable Technologies 500
Ecological and Human Health Impacts of Contaminated Food and Environments 400
Theories of Human Development 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 360
International Relations at LSE: A History of 75 Years 308
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 物理 内科学 计算机科学 纳米技术 复合材料 化学工程 遗传学 基因 物理化学 催化作用 光电子学 量子力学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3920444
求助须知:如何正确求助?哪些是违规求助? 3465412
关于积分的说明 10937837
捐赠科研通 3193835
什么是DOI,文献DOI怎么找? 1764816
邀请新用户注册赠送积分活动 855251
科研通“疑难数据库(出版商)”最低求助积分说明 794645