ESDMR-Net: A lightweight network with expand-squeeze and dual multiscale residual connections for medical image segmentation

计算机科学 残余物 对偶(语法数字) 分割 网(多面体) 人工智能 图像(数学) 图像分割 计算机视觉 模式识别(心理学) 算法 几何学 数学 艺术 文学类
作者
Tariq M. Khan,Syed S. Naqvi,Erik Meijering
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier BV]
卷期号:133: 107995-107995 被引量:8
标识
DOI:10.1016/j.engappai.2024.107995
摘要

Segmentation is an important task in a wide range of computer vision applications, including medical image analysis. Recent years have seen an increase in the complexity of medical image segmentation approaches based on sophisticated convolutional neural network architectures. This progress has led to incremental enhancements in performance on widely recognised benchmark datasets. However, most of the existing approaches are computationally demanding, which limits their practical applicability. This paper presents an expand-squeeze dual multiscale residual network (ESDMR-Net), which is a full y convolutional network that is particularly well-suited for resource-constrained computing hardware such as mobile devices. ESDMR-Net focusses on extracting multiscale features, enabling the learning of contextual dependencies among semantically distinct features. The ESDMR-Net architecture allows dual-stream information flow within encoder–decoder pairs. The expansion operation (depthwise separable convolution) makes all of the rich features with multiscale information available to the squeeze operation (bottleneck layer), which then extracts the necessary information for the segmentation task. The Expand-Squeeze (ES) block helps the network pay more attention to under-represented classes, which contributes to improved segmentation accuracy. To enhance the flow of information across multiple resolutions or scales, we integrated dual multiscale residual (DMR) blocks into the skip connection. This integration enables the decoder to access features from various levels of abstraction, ultimately resulting in more comprehensive feature representations. We present experiments on seven datasets from five distinct examples of applications: segmentation of retinal vessels (2×), skin lesions (2×), digestive tract polyps, lung regions, and cells. Our model demonstrates strong performance, with an F1 score of 0.8287%, 0.8211%, 0.9034%, 0.9451%, 0.9543%, 0.9840%, and 0.8424% on the DRIVE, CHASE, ISIC2017, ISIC2016, CVC-ClinicDB, MC and MoNuSeg datasets, respectively. Remarkably, our model achieves these results despite having significantly fewer trainable parameters, with a reduction of two or even three orders of magnitude.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CT发布了新的文献求助10
刚刚
科研通AI5应助默默采纳,获得30
刚刚
WMT完成签到 ,获得积分10
刚刚
香精完成签到,获得积分10
1秒前
1秒前
cp1690完成签到,获得积分10
1秒前
2秒前
3秒前
Ftplanet发布了新的文献求助10
3秒前
火星上的绿草完成签到,获得积分10
3秒前
科研通AI2S应助威威12采纳,获得10
4秒前
Owen应助晓晓晓采纳,获得10
4秒前
4秒前
典雅擎苍发布了新的文献求助10
5秒前
天天快乐应助ybwei2008_163采纳,获得10
5秒前
GAOBIN000完成签到,获得积分20
5秒前
5秒前
6秒前
吃大肉发布了新的文献求助10
7秒前
烟花应助额我认为采纳,获得10
7秒前
小树叶发布了新的文献求助10
7秒前
8秒前
fangliu完成签到,获得积分10
8秒前
结实的青荷完成签到,获得积分10
8秒前
楚楚完成签到 ,获得积分10
9秒前
9秒前
得鹿梦鱼完成签到,获得积分10
9秒前
上官若男应助吱吱吱采纳,获得10
9秒前
善学以致用应助123采纳,获得10
9秒前
9秒前
aguo发布了新的文献求助30
9秒前
酷波er应助房延彤采纳,获得10
11秒前
万莎莎完成签到 ,获得积分10
11秒前
11秒前
阳光奎完成签到,获得积分10
12秒前
12秒前
CT完成签到,获得积分10
12秒前
你好你好完成签到 ,获得积分10
13秒前
结实的山菡应助Zephyr采纳,获得10
13秒前
姜彦乔完成签到 ,获得积分10
13秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
One Man Talking: Selected Essays of Shao Xunmei, 1929–1939 (PDF!) 1000
Technologies supporting mass customization of apparel: A pilot project 450
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3789038
求助须知:如何正确求助?哪些是违规求助? 3334180
关于积分的说明 10267495
捐赠科研通 3050372
什么是DOI,文献DOI怎么找? 1674003
邀请新用户注册赠送积分活动 802379
科研通“疑难数据库(出版商)”最低求助积分说明 760570