Navigation path recognition between rows of fruit trees based on semantic segmentation

人工智能 模式识别(心理学) 计算机科学 计算机视觉 分割 路径(计算) 棱锥(几何) 数学 几何学 数据库 程序设计语言
作者
Liang Zhang,Ming Li,Xinghui Zhu,Yedong Chen,Jinqi Huang,Zhiwei Wang,Hu Tian,Ziru Wang,Kui Fang
出处
期刊:Computers and Electronics in Agriculture [Elsevier BV]
卷期号:216: 108511-108511 被引量:4
标识
DOI:10.1016/j.compag.2023.108511
摘要

The navigation path recognition has been recognized as one of the most important subtasks of intelligent agricultural equipment in orchard operations. However, there are still some challenges in recognizing navigation paths between rows of fruit trees, including the accuracy, real-time performance, generalization of deep learning models. The Fast-Unet model was proposed by pruning and optimization based on Unet for recognizing navigation paths between rows of fruit trees, which inherited encoding–decoding structure and multi-layer feature sensing capability. The number of convolutional kernels used to extract features in the Fast-Unet was reduced to one-fourth of that in Unet to improve inference speed. To address the blurring of the boundary of the recognized object due to the reduction in the number of convolutional kernels, the atrous spatial pyramid pooling (ASPP) module was used in the encoding part to extract the multiscale information to improve the recognition accuracy. The navigation path edges determined by Fast-Unet and Canny operators, navigation lines and yaw angles were generated by the least square method.. In this study, the Fast-Unet model was first trained on the peach dataset, and then the trained model was transferred to the small dataset of oranges and kiwifruits for navigation path recognition to verify the generalization. The Mean Intersection over Union (MIOU) of the Fast-Unet for peaches, oranges and kiwifruits navigation path extraction accuracy were 0.977, 0.987 and 0.956, respectively. The mean difference between the predicted yaw angle of peaches, oranges and kiwifruits navigation paths and the labelled were 0.397°, 0.102° and 0.239°, respectively. In terms of real-time performance, the inference speed was 48.8 frames per second (FPS) to process the RGB image data on a single-core CPU. The inference speed of the Fast-Unet model was 1.59 times higher than that of Unet. Through transfer learning, the Fast-Unet model can realize real-time recognition of navigation paths for peaches, oranges and kiwifruits. These results can provide technical and theoretical support to the development of navigation equipment and visual slip prediction for intelligent agricultural machinery in the orchard.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
3秒前
打打应助韩哈哈采纳,获得10
4秒前
电击小子完成签到 ,获得积分10
4秒前
8秒前
Coarrb完成签到,获得积分10
10秒前
干净千凝发布了新的文献求助10
10秒前
科研通AI2S应助熊猫炼乳采纳,获得10
12秒前
随遇而安应助玻璃球采纳,获得20
13秒前
小垚应助坐以待毕采纳,获得10
13秒前
15秒前
小蘑菇应助龙喵喵采纳,获得10
17秒前
冷酷雨南发布了新的文献求助10
19秒前
干净千凝完成签到,获得积分10
19秒前
23秒前
24秒前
一大口百香果完成签到,获得积分10
24秒前
24秒前
完美世界应助xdlongchem采纳,获得10
26秒前
NOMORE发布了新的文献求助10
28秒前
阳yang完成签到,获得积分10
28秒前
tingz发布了新的文献求助10
28秒前
NexusExplorer应助相濡以沫采纳,获得10
29秒前
29秒前
深情安青应助孙雷采纳,获得10
31秒前
LioXH完成签到,获得积分10
34秒前
35秒前
小小发布了新的文献求助10
35秒前
37秒前
xdlongchem发布了新的文献求助10
39秒前
39秒前
慕青应助8D采纳,获得10
39秒前
boshi发布了新的文献求助10
39秒前
相濡以沫发布了新的文献求助10
40秒前
victorchen完成签到,获得积分10
41秒前
宁静致远完成签到,获得积分20
43秒前
43秒前
45秒前
子韵发布了新的文献求助10
45秒前
xdlongchem完成签到,获得积分10
46秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Preparative Methods of Polymer Chemistry, 3rd Edition 200
The Oxford Handbook of Chinese Philosophy 200
New Syntheses with Carbon Monoxide 200
Quanterion Automated Databook NPRD-2023 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3834961
求助须知:如何正确求助?哪些是违规求助? 3377482
关于积分的说明 10498625
捐赠科研通 3096967
什么是DOI,文献DOI怎么找? 1705347
邀请新用户注册赠送积分活动 820529
科研通“疑难数据库(出版商)”最低求助积分说明 772123