Revolutionizing Cancer Research and Drug Discovery: The Role of Artificial Intelligence and Machine Learning

药物发现 药品 癌症 抗癌药物 计算机科学 人工智能 医学 药理学 生物信息学 生物 内科学
作者
Ajita Paliwal,Md. Aftab Alam,Preeti Sharma,Smita Jain,Shivang Dhoundiyal
出处
期刊:Current Cancer Therapy Reviews [Bentham Science Publishers]
卷期号:20
标识
DOI:10.2174/0115733947288355240305080236
摘要

Abstract: Artificial Intelligence (AI) and Machine Learning (ML) have revolutionized various industries, including cancer research and drug discovery. This article provides a summary of the history of AI and ML, highlighting their resurgence in the 1990s with advancements in computational power and new algorithms. In the context of drug discovery, AI and ML techniques have been applied to accelerate the development of new drugs, from target identification and lead generation to drug repurposing. AI applications in drug design and virtual screening have improved the efficiency of identifying potential drug candidates. Deep learning, a division of ML, has been particularly effective in predicting protein structures and optimizing lead compounds. In anti-cancer drug target prediction, AI and ML algorithms analyze large-scale genomic, proteomic, and clinical data to identify potential targets for cancer therapy. AI has also transformed cancer imaging and diagnosis by enhancing the accuracy and efficiency of cancer detection, classification, and prognosis. Medical imaging analysis, pathology, and radiology have benefited from AI algorithms’ ability to interpret and analyze various imaging modalities. Moreover, AI applications in cancer treatment have facilitated the development of predictive models for treatment response, enabling personalized and targeted therapies based on individual patient characteristics. The purpose of the study was to give facts regarding the integration of artificial intelligence and machine learning in drug discovery and cancer therapy and its significant prospects for improving efficiency, decreasing costs, and improving patient outcomes.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
shan发布了新的文献求助10
1秒前
眼睛大慕梅完成签到,获得积分10
1秒前
舒服的鱼完成签到 ,获得积分10
2秒前
3秒前
orange9完成签到,获得积分10
3秒前
4秒前
4秒前
4秒前
lily完成签到,获得积分20
5秒前
orange9发布了新的文献求助10
6秒前
欣慰的寄灵完成签到,获得积分10
7秒前
7秒前
8秒前
8秒前
lee完成签到,获得积分20
8秒前
谨慎时光完成签到,获得积分10
9秒前
lee发布了新的文献求助10
11秒前
12秒前
zhangxueqing完成签到,获得积分10
12秒前
lin发布了新的文献求助10
12秒前
AJJACKY完成签到,获得积分10
12秒前
13秒前
13秒前
阻击兽发布了新的文献求助10
14秒前
学阿斗完成签到,获得积分20
14秒前
轻松千山完成签到,获得积分10
15秒前
顾矜应助ZhenpuWang采纳,获得10
16秒前
17秒前
英勇珊珊发布了新的文献求助10
17秒前
20秒前
21秒前
沉默的画板完成签到,获得积分10
21秒前
lin完成签到,获得积分10
21秒前
海阔天空完成签到,获得积分10
23秒前
00发布了新的文献求助10
23秒前
所所应助HHH采纳,获得10
24秒前
顾矜应助英勇珊珊采纳,获得10
25秒前
小马甲应助英勇珊珊采纳,获得10
25秒前
海阔天空发布了新的文献求助10
26秒前
俞若枫完成签到,获得积分10
26秒前
高分求助中
Narcissistic Personality Disorder 700
Parametric Random Vibration 600
城市流域产汇流机理及其驱动要素研究—以北京市为例 500
Plasmonics 500
Drug distribution in mammals 500
Building Quantum Computers 458
Single Element Semiconductors: Properties and Devices 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3854887
求助须知:如何正确求助?哪些是违规求助? 3397660
关于积分的说明 10603000
捐赠科研通 3119450
什么是DOI,文献DOI怎么找? 1719250
邀请新用户注册赠送积分活动 828133
科研通“疑难数据库(出版商)”最低求助积分说明 777279