Diverse semantic information fusion for Unsupervised Person Re-Identification

计算机科学 鉴定(生物学) 稳健性(进化) 水准点(测量) 人工智能 基线(sea) 自然语言处理 语义学(计算机科学) 机器学习 代表(政治) 灵活性(工程) 情报检索 生物 植物 基因 程序设计语言 地理 生物化学 化学 海洋学 统计 数学 大地测量学 地质学 政治 政治学 法学
作者
Qingsong Hu,Huafeng Li,Zhanxuan Hu,Feiping Nie
出处
期刊:Information Fusion [Elsevier BV]
卷期号:107: 102319-102319 被引量:4
标识
DOI:10.1016/j.inffus.2024.102319
摘要

Unsupervised Person Re-Identification (Re-ID) has achieved considerable success through leveraging various approaches that rely on hard pseudo-labels. Prior work mainly focused on improving the quality of pseudo-labels or enhancing the robustness of representation learning model. However, there has been little focus on exploring the contextual semantic information, which can reveal rich relations within samples and provide complementary knowledge to assist the hard pseudo-labels. To this end, we propose a novel method named FuseDSI to explore the potential to harness diverse contextual semantic information fusion. In addition to the hard pseudo labels, FuseDSI explores additional pair-wise semantic information and neighborhood semantic information within each mini-batch through online self-exploration. Furthermore, it leverages the explored semantic information as an additional supervisory signal to enhance robust representation learning. For these two types of contextual semantic information are dynamically estimated in an online manner based on the model’s status, they complement each other well with the hard pseudo-labels. One significant advantage of FuseDSI is its flexibility in combining various pseudo-labels-based methods. Moreover, since exploring the contextual semantic information requires no external elaborate module nor memory-consuming memory bank, it maintains the structure of baseline model with negligible impact on training time. Experimental studies on two widely used person ReID benchmark datasets (MSMT17, Market-1501) demonstrate that FuseDSI consistently improves the performance of baseline model and achieves the state-of-the-art results. Code is available at: FuseDSI.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
碎片完成签到,获得积分10
2秒前
恐龙植树完成签到,获得积分10
3秒前
Ava应助地表飞猪采纳,获得30
5秒前
追寻清完成签到,获得积分10
6秒前
止戈完成签到,获得积分10
7秒前
7秒前
顾矜应助雪白小丸子采纳,获得10
9秒前
10秒前
星夜发布了新的文献求助10
12秒前
香蕉觅云应助carry采纳,获得10
15秒前
keepmoving_12完成签到 ,获得积分10
15秒前
李露露发布了新的文献求助10
15秒前
研友_VZG7GZ应助sxin采纳,获得10
15秒前
尼可深蓝完成签到 ,获得积分10
18秒前
学术卷心菜完成签到,获得积分10
19秒前
Becky完成签到 ,获得积分10
21秒前
至乐无乐完成签到 ,获得积分10
22秒前
22秒前
淡定靖儿完成签到 ,获得积分10
24秒前
善学以致用应助曹梦梦采纳,获得10
25秒前
Giao完成签到,获得积分10
25秒前
carry完成签到,获得积分10
25秒前
26秒前
29秒前
29秒前
66668888完成签到,获得积分0
30秒前
充电宝应助科研通管家采纳,获得10
32秒前
Leslie发布了新的文献求助10
32秒前
big龙应助科研通管家采纳,获得10
32秒前
田様应助科研通管家采纳,获得10
32秒前
32秒前
Nature完成签到,获得积分10
32秒前
李健的小迷弟应助PanCiro采纳,获得10
32秒前
ybwei2008_163完成签到,获得积分20
33秒前
Ade阿德发布了新的文献求助10
33秒前
35秒前
37秒前
隐形曼青应助yzx采纳,获得10
38秒前
38秒前
39秒前
高分求助中
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
Hardness Tests and Hardness Number Conversions 300
Knowledge management in the fashion industry 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3816948
求助须知:如何正确求助?哪些是违规求助? 3360399
关于积分的说明 10407721
捐赠科研通 3078337
什么是DOI,文献DOI怎么找? 1690720
邀请新用户注册赠送积分活动 814023
科研通“疑难数据库(出版商)”最低求助积分说明 767985