Noise aware content-noise complementary GAN with local and global discrimination for low-dose CT denoising

噪音(视频) 降噪 计算机科学 声学 模式识别(心理学) 人工智能 物理 图像(数学)
作者
Kousik Sarkar,Soumen Bag,Prasun Chandra Tripathi
出处
期刊:Neurocomputing [Elsevier BV]
卷期号:582: 127473-127473 被引量:4
标识
DOI:10.1016/j.neucom.2024.127473
摘要

In response to rising concerns over radiation exposure in computed tomography (CT) imaging, effective denoising methods for low-dose CT (LDCT) images are crucial. In recent years, the use of deep learning techniques especially generative adversarial networks (GANs) significantly enhanced the efficiency of LDCT denoising methods, surpassing traditional methods. However, GAN-based denoising methods often face challenges in preserving structural consistency and fine details. This study introduces a novel GAN framework with three accretions to enhance the effectiveness of LDCT denoising. Firstly, our generator is designed to leverage a complementary learning scheme between image noise and image content via two distinct paths. One path focuses on exploring the anatomical information of the image, while the second path is dedicated to learning the noise pattern. This complementary learning scheme provides stable noise cancellation while preserving the maximum structural information of the image. Subsequently, we propose a novel noise-conscious mean absolute error loss to address the challenge posed by the non-stationary characteristic of CT noise. In contrast to conventional MAE loss, this loss attentively prioritizes the different parts of the image based on the local distribution of noise in that region. We also incorporate a gradient-domain loss into the loss function, which inspires the generator to preserve precise image details through explicit guidance. Finally, this study adopted a U-Net-based design for the discriminator to better regularize the model by discriminating between the clean image and the denoised image at both global and local levels. The merit of this discriminator is that it can better adapt to the non-stationary environment of GAN training and guide the generator to produce denoised images that are locally and globally consistent. Our thorough experiments using abdominal CT and lung CT datasets demonstrate the superior performance of our approach compared to state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
gzslwddhjx完成签到,获得积分10
刚刚
6秒前
伍柒完成签到,获得积分10
8秒前
Jinnnnn完成签到,获得积分10
8秒前
一颗小草完成签到,获得积分10
9秒前
NexusExplorer应助小逗比采纳,获得10
10秒前
11秒前
小橙完成签到 ,获得积分10
12秒前
Ztx发布了新的文献求助10
12秒前
15秒前
xrkxrk完成签到 ,获得积分0
15秒前
美子完成签到,获得积分10
16秒前
17秒前
二三语逢山外山2完成签到 ,获得积分10
17秒前
铁柱xh完成签到 ,获得积分10
17秒前
嘴嘴发布了新的文献求助10
17秒前
Lr完成签到,获得积分10
18秒前
TAO完成签到,获得积分10
18秒前
19秒前
liu发布了新的文献求助10
20秒前
可爱小哪吒完成签到,获得积分10
21秒前
铲子发布了新的文献求助10
21秒前
123完成签到,获得积分10
23秒前
二三语逢山外山2关注了科研通微信公众号
23秒前
24秒前
24秒前
大模型应助Wdw2236采纳,获得10
26秒前
jhh完成签到 ,获得积分10
26秒前
27秒前
充电宝应助能能采纳,获得10
30秒前
30秒前
Whim发布了新的文献求助50
31秒前
无私血茗完成签到,获得积分10
33秒前
大模型应助天麟采纳,获得10
33秒前
科研通AI2S应助机灵夜云采纳,获得20
33秒前
33秒前
钇铷完成签到,获得积分10
33秒前
LZL发布了新的文献求助10
34秒前
35秒前
顾矜应助小羊佳佳采纳,获得10
36秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Production Logging: Theoretical and Interpretive Elements 3000
CRC Handbook of Chemistry and Physics 104th edition 1000
Izeltabart tapatansine - AdisInsight 600
Introduction to Comparative Public Administration Administrative Systems and Reforms in Europe, Third Edition 3rd edition 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
Individualized positive end-expiratory pressure in laparoscopic surgery: a randomized controlled trial 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3761774
求助须知:如何正确求助?哪些是违规求助? 3305540
关于积分的说明 10134658
捐赠科研通 3019564
什么是DOI,文献DOI怎么找? 1658226
邀请新用户注册赠送积分活动 791989
科研通“疑难数据库(出版商)”最低求助积分说明 754751