Noise aware content-noise complementary GAN with local and global discrimination for low-dose CT denoising

噪音(视频) 降噪 计算机科学 声学 模式识别(心理学) 人工智能 物理 图像(数学)
作者
Kousik Sarkar,Soumen Bag,Prasun Chandra Tripathi
出处
期刊:Neurocomputing [Elsevier BV]
卷期号:582: 127473-127473 被引量:4
标识
DOI:10.1016/j.neucom.2024.127473
摘要

In response to rising concerns over radiation exposure in computed tomography (CT) imaging, effective denoising methods for low-dose CT (LDCT) images are crucial. In recent years, the use of deep learning techniques especially generative adversarial networks (GANs) significantly enhanced the efficiency of LDCT denoising methods, surpassing traditional methods. However, GAN-based denoising methods often face challenges in preserving structural consistency and fine details. This study introduces a novel GAN framework with three accretions to enhance the effectiveness of LDCT denoising. Firstly, our generator is designed to leverage a complementary learning scheme between image noise and image content via two distinct paths. One path focuses on exploring the anatomical information of the image, while the second path is dedicated to learning the noise pattern. This complementary learning scheme provides stable noise cancellation while preserving the maximum structural information of the image. Subsequently, we propose a novel noise-conscious mean absolute error loss to address the challenge posed by the non-stationary characteristic of CT noise. In contrast to conventional MAE loss, this loss attentively prioritizes the different parts of the image based on the local distribution of noise in that region. We also incorporate a gradient-domain loss into the loss function, which inspires the generator to preserve precise image details through explicit guidance. Finally, this study adopted a U-Net-based design for the discriminator to better regularize the model by discriminating between the clean image and the denoised image at both global and local levels. The merit of this discriminator is that it can better adapt to the non-stationary environment of GAN training and guide the generator to produce denoised images that are locally and globally consistent. Our thorough experiments using abdominal CT and lung CT datasets demonstrate the superior performance of our approach compared to state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
szt完成签到,获得积分10
刚刚
拉格朗日柴犬完成签到,获得积分10
1秒前
齐明皓完成签到,获得积分10
2秒前
冰冻沙丁鱼完成签到,获得积分10
2秒前
3秒前
wanci应助李亦书采纳,获得10
3秒前
hongxing liu完成签到,获得积分10
4秒前
dudu完成签到,获得积分10
4秒前
4秒前
李sir发布了新的文献求助10
5秒前
小李发布了新的文献求助10
5秒前
lxy应助瓜尔佳采纳,获得10
5秒前
7秒前
xjcy发布了新的文献求助10
7秒前
7秒前
7秒前
凯文完成签到 ,获得积分10
8秒前
科目三应助包容的千兰采纳,获得10
10秒前
zzzhu发布了新的文献求助10
11秒前
Ray-Q完成签到,获得积分10
11秒前
12秒前
完美世界应助Lydia采纳,获得10
12秒前
12秒前
汉堡包应助Lone采纳,获得10
13秒前
丁仪完成签到,获得积分10
14秒前
小军完成签到,获得积分10
15秒前
17秒前
17秒前
18秒前
xjcy发布了新的文献求助10
19秒前
20秒前
一把过完成签到,获得积分10
20秒前
刘浩发布了新的文献求助10
20秒前
小李完成签到,获得积分10
22秒前
Alex应助高高的如彤采纳,获得30
22秒前
yc发布了新的文献求助10
23秒前
23秒前
Komorebi完成签到 ,获得积分10
23秒前
24秒前
一把过发布了新的文献求助10
24秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Multichannel rotary joints-How they work 400
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3794745
求助须知:如何正确求助?哪些是违规求助? 3339531
关于积分的说明 10296585
捐赠科研通 3056322
什么是DOI,文献DOI怎么找? 1676961
邀请新用户注册赠送积分活动 804956
科研通“疑难数据库(出版商)”最低求助积分说明 762244