Noise aware content-noise complementary GAN with local and global discrimination for low-dose CT denoising

噪音(视频) 降噪 计算机科学 声学 模式识别(心理学) 人工智能 物理 图像(数学)
作者
Kousik Sarkar,Soumen Bag,Prasun Chandra Tripathi
出处
期刊:Neurocomputing [Elsevier BV]
卷期号:: 127473-127473
标识
DOI:10.1016/j.neucom.2024.127473
摘要

In response to rising concerns over radiation exposure in computed tomography (CT) imaging, effective denoising methods for low-dose CT (LDCT) images are crucial. In recent years, the use of deep learning techniques especially generative adversarial networks (GANs) significantly enhanced the efficiency of LDCT denoising methods, surpassing traditional methods. However, GAN-based denoising methods often face challenges in preserving structural consistency and fine details. This study introduces a novel GAN framework with three accretions to enhance the effectiveness of LDCT denoising. Firstly, our generator is designed to leverage a complementary learning scheme between image noise and image content via two distinct paths. One path focuses on exploring the anatomical information of the image, while the second path is dedicated to learning the noise pattern. This complementary learning scheme provides stable noise cancellation while preserving the maximum structural information of the image. Subsequently, we propose a novel noise-conscious mean absolute error loss to address the challenge posed by the non-stationary characteristic of CT noise. In contrast to conventional MAE loss, this loss attentively prioritizes the different parts of the image based on the local distribution of noise in that region. We also incorporate a gradient-domain loss into the loss function, which inspires the generator to preserve precise image details through explicit guidance. Finally, this study adopted a U-Net-based design for the discriminator to better regularize the model by discriminating between the clean image and the denoised image at both global and local levels. The merit of this discriminator is that it can better adapt to the non-stationary environment of GAN training and guide the generator to produce denoised images that are locally and globally consistent. Our thorough experiments using abdominal CT and lung CT datasets demonstrate the superior performance of our approach compared to state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
sam完成签到,获得积分10
1秒前
2秒前
xiao完成签到 ,获得积分10
3秒前
Fossil@1017完成签到,获得积分10
6秒前
情怀应助小远远采纳,获得10
6秒前
www发布了新的文献求助10
8秒前
萝卜丁完成签到 ,获得积分0
9秒前
10秒前
10秒前
Jj完成签到,获得积分10
11秒前
12秒前
atom完成签到,获得积分10
14秒前
15秒前
Wesley完成签到,获得积分10
15秒前
小宝妈完成签到,获得积分10
15秒前
高大豌豆发布了新的文献求助10
16秒前
16秒前
conny应助万幸鹿采纳,获得10
16秒前
结实的青荷完成签到,获得积分10
17秒前
18秒前
微笑的井完成签到 ,获得积分10
18秒前
明月照我程完成签到,获得积分10
20秒前
保洁王姐完成签到,获得积分10
21秒前
huangyao完成签到 ,获得积分10
22秒前
zho应助呀呼采纳,获得10
25秒前
万幸鹿完成签到,获得积分10
26秒前
郑zhenglanyou完成签到 ,获得积分10
26秒前
a成完成签到,获得积分10
27秒前
speed完成签到,获得积分10
27秒前
JerryZ发布了新的文献求助10
28秒前
成就的雪莲完成签到,获得积分10
30秒前
duj622完成签到 ,获得积分10
31秒前
31秒前
田様应助www采纳,获得10
33秒前
彭于晏应助虚拟电子小熊采纳,获得10
34秒前
aertims发布了新的文献求助10
35秒前
35秒前
皇帝的床帘完成签到,获得积分10
35秒前
不舍天真完成签到,获得积分10
35秒前
37秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
The First Nuclear Era: The Life and Times of a Technological Fixer 500
Unusual formation of 4-diazo-3-nitriminopyrazoles upon acid nitration of pyrazolo[3,4-d][1,2,3]triazoles 500
岡本唐貴自伝的回想画集 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3671619
求助须知:如何正确求助?哪些是违规求助? 3228325
关于积分的说明 9779523
捐赠科研通 2938636
什么是DOI,文献DOI怎么找? 1610158
邀请新用户注册赠送积分活动 760547
科研通“疑难数据库(出版商)”最低求助积分说明 736093