Ultrasound k-nearest neighbor entropy imaging: Theory, algorithm, and applications

k-最近邻算法 Nakagami分布 参数统计 算法 计算机科学 联合熵 估计员 直方图 熵(时间箭头) 最大熵原理 成像体模 熵估计 模式识别(心理学) 人工智能 数学 物理 统计 光学 解码方法 量子力学 衰退 图像(数学)
作者
Sinan Li,Po‐Hsiang Tsui,Weiwei Wu,Shuicai Wu,Zhuhuang Zhou
出处
期刊:Ultrasonics [Elsevier BV]
卷期号:138: 107256-107256 被引量:3
标识
DOI:10.1016/j.ultras.2024.107256
摘要

Ultrasound information entropy is a flexible approach for analyzing ultrasound backscattering. Shannon entropy imaging based on probability distribution histograms (PDHs) has been implemented as a promising method for tissue characterization and diagnosis. However, the bin number affects the stability of entropy estimation. In this study, we introduced the k-nearest neighbor (KNN) algorithm to estimate entropy values and proposed ultrasound KNN entropy imaging. The proposed KNN estimator leveraged the Euclidean distance between data samples, rather than the histogram bins by conventional PDH estimators. We also proposed cumulative relative entropy (CRE) imaging to analyze time-series radiofrequency signals and applied it to monitor thermal lesions induced by microwave ablation (MWA). Computer simulation phantom experiments were conducted to validate and compare the performance of the proposed KNN entropy imaging, the conventional PDH entropy imaging, and Nakagami-m parametric imaging in detecting the variations of scatterer densities and visualizing inclusions. Clinical data of breast lesions were analyzed, and porcine liver MWA experiments ex vivo were conducted to validate the performance of KNN entropy imaging in classifying benign and malignant breast tumors and monitoring thermal lesions, respectively. Compared with PDH, the entropy estimation based on KNN was less affected by the tuning parameters. KNN entropy imaging was more sensitive to changes in scatterer densities and performed better visualizable capability than typical Shannon entropy (TSE) and Nakagami-m parametric imaging. Among different imaging methods, KNN-based Shannon entropy (KSE) imaging achieved the higher accuracy in classification of benign and malignant breast tumors and KNN-based CRE imaging had larger lesion-to-normal contrast when monitoring the ablated areas during MWA at different powers and treatment durations. Ultrasound KNN entropy imaging is a potential quantitative ultrasound approach for tissue characterization.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
2秒前
Wizard发布了新的文献求助10
3秒前
3秒前
NexusExplorer应助轻松的贞采纳,获得10
3秒前
4秒前
田様应助胖虎采纳,获得10
5秒前
5秒前
小也发布了新的文献求助20
5秒前
5秒前
七七发布了新的文献求助30
7秒前
江雯君发布了新的文献求助10
8秒前
8秒前
Bismarck发布了新的文献求助10
9秒前
dongbei完成签到,获得积分20
10秒前
雪梨101发布了新的文献求助10
10秒前
阿泽发布了新的文献求助10
10秒前
TaoJ完成签到,获得积分0
10秒前
1234发布了新的文献求助10
12秒前
14秒前
生动绫完成签到,获得积分20
16秒前
传奇3应助自由的寒香采纳,获得10
17秒前
香蕉觅云应助江雯君采纳,获得10
18秒前
轻松的贞完成签到,获得积分10
19秒前
生动绫发布了新的文献求助10
19秒前
random完成签到,获得积分10
20秒前
21秒前
领导范儿应助科研通管家采纳,获得10
21秒前
21秒前
anan0419发布了新的文献求助30
23秒前
zho驳回了赘婿应助
23秒前
24秒前
阿渺发布了新的文献求助10
24秒前
1234完成签到,获得积分10
27秒前
轻松的贞发布了新的文献求助10
28秒前
铁妹完成签到,获得积分10
29秒前
xc124完成签到,获得积分10
31秒前
wanci应助顶刊相见采纳,获得10
34秒前
欢呼的明雪完成签到 ,获得积分10
35秒前
Bonnienuit发布了新的文献求助10
36秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
Platinum-group elements : mineralogy, geology, recovery 260
Geopora asiatica sp. nov. from Pakistan 230
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3780526
求助须知:如何正确求助?哪些是违规求助? 3326007
关于积分的说明 10225152
捐赠科研通 3041089
什么是DOI,文献DOI怎么找? 1669166
邀请新用户注册赠送积分活动 799021
科研通“疑难数据库(出版商)”最低求助积分说明 758669