Accuracy of a Large Language Model as a new tool for optometry education

双眼视觉 验光服务 课程作业 计算机科学 相关性(法律) 正常视力 人工智能 心理学 医学 医学教育 政治学 法学
作者
Genı́s Cardona,Marc Argilés,Luis Pérez-Mañá
出处
期刊:Clinical and Experimental Optometry [Informa]
卷期号:108 (3): 343-346 被引量:6
标识
DOI:10.1080/08164622.2023.2288174
摘要

The unsupervised introduction of certain Artificial Intelligence tools in optometry education may challenge the proper acquisition of accurate clinical knowledge and skills proficiency. Large Language Models like ChatGPT (Generative Pretrained Transformer) are increasingly being used by researchers and students for work and academic assignments. The authoritative and conversationally correct language provided by these tools may mask their inherent limitations when presented with specific scientific and clinical queries. Three sets of 10 queries related to contact lenses & anterior eye, low vision and binocular vision & vision therapy were presented to ChatGPT, with instructions to provide five relevant references to support each response. Three experts and 53 undergraduate and post-graduate students graded from 0 to 10 the accuracy of the responses, and the references were evaluated for precision and relevance. Students graded from 0 to 10 the potential usefulness of ChatGPT for their academic coursework. Median scores were 7, 8 and 6 (experts) and 8, 9 and 7.5 (students) for the contact lenses & anterior eye, low vision and binocular vision & vision therapy categories, respectively. Responses to more specific queries were awarded lower scores by both experts (ρ = –0.612; P < 0.001) and students (ρ = –0.578; P = 0.001). Of 150 references, 24% were accurate and 19.3% relevant. Students graded the usefulness of ChatGPT with 7.5 (2 to 9), 7 (3 to 9) and 8.5 (3 to 10) for contact lenses & anterior eye, low vision and binocular vision & vision therapy, respectively. Careful expert appraisal of the responses and, particularly, of the references provided by ChatGPT is required in research and academic settings. As the use of these tools becomes widespread, it is essential to take proactive steps to address their limitations and ensure their responsible use.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
jian完成签到,获得积分20
1秒前
1111发布了新的文献求助10
2秒前
852应助索隆前女友采纳,获得10
2秒前
细心雨安完成签到 ,获得积分10
2秒前
silence发布了新的文献求助10
2秒前
小婷发布了新的文献求助10
2秒前
阔达栾完成签到,获得积分10
2秒前
棟仔超人发布了新的文献求助10
3秒前
高贵觅山发布了新的文献求助10
3秒前
yjl完成签到,获得积分10
4秒前
4秒前
4秒前
4秒前
4秒前
阔落完成签到,获得积分10
4秒前
橙子发布了新的文献求助10
5秒前
刻苦秋烟完成签到,获得积分10
5秒前
5秒前
想吃小馄饨完成签到 ,获得积分10
6秒前
喵喵完成签到,获得积分10
6秒前
7秒前
酷酷河马发布了新的文献求助10
7秒前
7秒前
7秒前
8秒前
香蕉觅云应助登峰采纳,获得10
8秒前
代沁发布了新的文献求助10
9秒前
五十完成签到 ,获得积分10
9秒前
hkxfg发布了新的文献求助30
9秒前
阔落发布了新的文献求助10
9秒前
wanci应助牛油果采纳,获得10
10秒前
10秒前
11秒前
棺姬发布了新的文献求助10
11秒前
11秒前
11秒前
儒雅致远发布了新的文献求助10
11秒前
量子星尘发布了新的文献求助10
11秒前
NexusExplorer应助ml采纳,获得10
12秒前
12秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 15000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5701523
求助须知:如何正确求助?哪些是违规求助? 5144097
关于积分的说明 15234332
捐赠科研通 4856496
什么是DOI,文献DOI怎么找? 2605913
邀请新用户注册赠送积分活动 1557254
关于科研通互助平台的介绍 1515177